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Abstract

Training a generic 3D face reconstruction model in a self-001
supervised manner using large-scale, in-the-wild 2D face002
image datasets enhances robustness to varying lighting con-003
ditions and occlusions while allowing the model to cap-004
ture animatable wrinkle details across diverse facial expres-005
sions. However, a generic model often fails to adequately006
represent the unique characteristics of specific individuals.007
In this paper, we propose a method to train a generic base008
model and then transfer it to yield person-specific models by009
integrating lightweight adapters within the large-parameter010
ViT-MAE base model. These person-specific models ex-011
cel at capturing individual facial shapes and detailed fea-012
tures while preserving the robustness and prior knowledge013
of detail variations from the base model. During train-014
ing, we introduce a silhouette vertex re-projection loss to015
address boundary “landmark marching” issues on the 3D016
face caused by pose variations. Additionally, we employ017
an innovative teacher-student loss to leverage the inher-018
ent strengths of UNet in feature boundary localization for019
training our detail MAE. Quantitative and qualitative ex-020
periments demonstrate that our approach achieves state-of-021
the-art performance in face alignment, detail accuracy, and022
richness. The code will be released to the public upon the023
acceptance of this paper.024

1. Introduction025

The reconstruction of 3D faces from 2D images has gar-026
nered considerable attention recently [5, 8, 12, 18, 20, 42,027
60, 62, 72, 76], with applications spanning diverse fields028
such as 3D avatar creation [1, 24, 30], face recognition [2,029
3, 50], and face animation driven by speech [11, 17, 47, 48]030
or video [27, 47, 81]. Leveraging deep learning, the major-031
ity of recent methods [5, 6, 8, 12, 15, 18, 20, 21, 26, 28,032
34, 38, 42, 49, 56–59, 62, 66–70, 72, 76, 79, 80] focus on033
reconstructing 3D faces from in-the-wild images, primarily034
employ a unified set of model weights across images of dif-035

Figure 1. In contrast to previous work (e.g., DECA), we first de-
velop a scalable, high-capacity base model (purple) and then trans-
fer it to create person-specific models by integrating lightweight,
person-specific adapters (red).

ferent individuals. While robust, these methods often un- 036
derfit individual-specific features. However, in real-world 037
scenarios, multiple images or a video of the same person are 038
often available, allowing models to focus on reconstructing 039
that specific individual more accurately—a context where 040
current methods still have limitations. 041

In contrast to previous work, we first develop a scal- 042
able, high-capacity base model, trained in a self-supervised 043
manner on extensive 2D images, and then transfer it to 044
yield person-specific models. Our base model reconstructs 045
feature-aligned 3D faces from in-the-wild images in real 046
time, capturing expression-related wrinkle details (animat- 047
able features). When multiple images or a video of an in- 048
dividual are available, we can transfer the generic model 049
by integrating a small set of person-specific parameters, 050
achieving more precise real-time reconstruction (30 fps on 051
an Nvidia GeForce RTX 3090) while maintaining robust- 052
ness against occlusions and preserving priors of various fa- 053
cial details associated with expressions. 054

Vision Transformer (ViT) [16] and Masked Autoencoder 055
(MAE) [22] are models with strong expressive capabilities, 056
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Figure 2. Motivation of our silhouette vertex re-projection loss.
(a) 2D landmark ground truth [55] (green) and projected 3D land-
marks provided by 3DDFA-v2 [20] (red). (b) The occluded bound-
ary 3D landmarks (red) “move” to the face silhouette in the 2D an-
notation (green). (c) All vertices of the coarse model reconstructed
by our method (light cyan, with crosses indicating normals point-
ing inward towards the image and dots indicating normals pointing
outward), and the outer edge points of the 3D face (blue). (d) A
zoom-in of the red box area from (c).

effectively gathering both local and global dependencies in057
visual data. They also excel in achieving robust perfor-058
mance and generalization on target tasks with limited train-059
ing data by leveraging pre-training on large-scale datasets,060
aligning well with our design. Capitalizing on these ad-061
vantages, We propose a ViT-MAE architecture for generic062
3D face reconstruction, leveraging differentiable render-063
ing [46] for self-supervised training. The model learns a064
parametric face model for coarse reconstruction, refined065
by a UV displacement map. This trained generic model066
serves as a base model, which can be further transferred to067
a person-specific model by integrating lightweight adapter068
modules [23] within the transformer layer. Our approach069
enables the single-image face reconstruction model to pro-070
cess multiple images or videos, fully leveraging the data to071
refine the reconstruction outcomes.072

When a 3D face is projected onto an image, inner073
and boundary landmarks outlining facial features and the074
cheek are also projected. Face reconstruction methods075
[26, 56, 57, 66–68, 79] constrain the reconstructed 3D face076
by minimizing the error between the projected 3D land-077
marks and the annotated ground truth. However, in non-078
frontal views, some landmarks, especially occluded bound-079
ary ones, become invisible (red points in Fig. 2.(b)), mak-080
ing accurate annotation difficult. In 2D landmark annota-081
tion, boundary landmarks for the 3D cheek “shift” to align082
with the face silhouette, causing misalignment—known as083
“landmark marching” [82]. Our innovative silhouette vertex084
re-projection loss addresses this by aligning 2D silhouette085
landmarks with silhouette edge vertices on the 3D model086
based on current vertex normal distribution (Fig. 2.(c)&(d)).087
Additionally, using dense silhouette edge vertices as loss088
candidates enhances the model’s sensitivity to normal er-089
rors, given the high variance in manual silhouette land-090
mark annotations [55] and their tendency to spread along091
the boundary tangent [25]. Experimental results show that092
our method surpasses prior approaches in face alignment.093

We define facial details as functions of identity and “ten-094

sion” [44] within facial geometry, which vary with expres- 095
sions. The local correspondence in UV space between the 096
detailed displacement map and the unwrapped image tex- 097
ture makes a UNet [51] well-suited for learning it, with 098
skip connections aiding in the precise localization of fea- 099
ture boundaries. However, the skip connections indiscrim- 100
inately convey all facial details to the displacement map, 101
hindering the modeling of the detail changes due to facial 102
deformation, and also making it challenging to fill in the 103
“holes” caused by occlusion. We employ a masked autoen- 104
coder (MAE) [22] for detail generation, using a consistency 105
loss [18] to decouple identity and “tension”-related details. 106
During training, a UNet acts as a “teacher” to guide the 107
MAE to learn detailed feature boundaries accurately. In- 108
tegrating the strengths of both UNet and MAE in detail 109
recovery and animation, our model outperforms previous 110
works in wrinkle diversity and accuracy without relying on 111
3D data. Our ablation study underscores the effectiveness. 112

In summary, our main contributions are: 113
Personalized Face Model. To the best of our knowl- 114

edge, we are the first to construct a person-specific 3D face 115
reconstruction model by transferring a large-scale generic 116
model. The person-specific adapters within the generic ViT- 117
MAE enhance the reconstruction from that person’s images 118
on both coarse and fine scales. 119

Silhouette Vertex Re-projection Loss. We introduce an 120
innovative loss function that aligns the annotated 2D silhou- 121
ette landmarks with the 3D facial boundary edges, provid- 122
ing more robust facial contour constraints. 123

Animatable Details and Teacher-Student Architec- 124
ture. We innovatively employ a teacher-student archi- 125
tecture that leverages UNet’s inherent strength in feature 126
boundary localization alongside MAE’s animation and ro- 127
bustness capabilities, enabling the MAE, which is ulti- 128
mately used for reconstruction and animation, to capture 129
both identity-related and tension-related details effectively. 130

2. Related Work 131

Monocular Coarse Reconstruction. Landmark loss is 132
widely used in self-supervised approaches [26, 37, 56, 57, 133
66–68, 79] to ensure the alignment of projected 3D land- 134
marks with 2D landmarks detected by face alignment tech- 135
niques. However, the “landmark marching” phenomenon 136
remains a persistent challenge. [56, 68] use dynamic bound- 137
ary landmarks determined by head pose to maintain correct 138
correspondence but overlook the influences of facial shape 139
and expression. [26] defines silhouette landmarks on hor- 140
izontal mesh lines, requiring manual redefinition for new 141
topologies. [37] renders a projection area to identify oc- 142
cluded boundary landmarks, though it is time-intensive. 143

Animatable Detail Reconstruction. Adding facial de- 144
tails greatly improves model authenticity and expressive- 145
ness. While many studies have achieved high-quality detail 146
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Figure 3. Illustration of our overall architecture. Left box: End-to-end learning framework of our coarse and detail stage. Given an
image, we first regress the FLAME parameters to obtain a coarse facial shape (following the green arrows) with the help of our proposed
silhouette vertex re-projection loss. We then use an MAE to reconstruct animatable facial details from the warped image texture and current
facial tension [44] (following the purple arrows). During person-specific transfer, we integrate lightweight, trainable adapters (red) while
freezing the base model weights. Right box: The training pipeline for animatable details. We first train a UNet teacher model that can
effectively recover visible details from the current perspective. Under the guidance of the UNet, we train our animatable detail MAE A
using a teacher-student paradigm.

generation [8, 21, 26, 34, 38, 49, 58, 59, 69, 72, 80], animat-147
able details remain underexplored. Such details are essen-148
tial for lifelike avatars that respond naturally to expressions.149
Methods like [31, 78] generate impressive animatable de-150
tails from textured meshes or neutral faces but struggle to151
differentiate static from dynamic features. While [14] and152
[32] generate animatable details, neither method supports153
3D face reconstruction from 2D images. [36] uses Style-154
GAN2 to animate details from facial images or 3D meshes155
but lacks robustness in varied lighting. Closest to our ap-156
proach, [5] and [18] reconstruct 3D faces with animatable157
details from single images; however, [5] is limited by its de-158
pendency on synthetic data for supervised training, and [18]159
achieves reasonable results but faces challenges in detail ac-160
curacy and the realism of expression-related variations.161

Multiple Images or Monocular Video. When multiple162
images or videos of a subject are available, we aim to fully163
utilize this data. Optimization-based methods [41, 53, 54,164
65] often face limitations such as slow inference, difficulty165
adapting to unseen facial areas, and insufficient geometric166
detail. Learning-based methods [15, 21, 38, 45, 60, 77]167
leverage deep networks to integrate different viewpoints but168
struggle to capture intricate facial details. While [21] and169
[38] can reconstruct high-detail textured geometry from sin-170
gle videos, they fail to model unique expression-specific171
features or wrinkles absent in the video. Critically, none172
of these methods produce animatable facial details.173

3. Method174

Our base model and transferred person-specific models175
share a two-stage self-supervised training framework. This176

section details the coarse and detailed stages, followed by 177
the transfer process to obtain a person-specific model. 178

3.1. Preliminary 179

3D Geometry Model. FLAME [33] is a statistical 3D head 180
model that, given identity shape parameters β ∈ R|β|, fa- 181
cial expression parameters ψ ∈ R|ψ|, and pose parameters 182
θ ∈ R3k+3 for rotations around k = 4 joints (neck, jaw, and 183
eyeballs) and global rotation, outputs a mesh S(β,θ,ψ) 184
with nv = 5023 vertices and nf = 9976 faces. 185

Appearance Model. We use a texture statistical model 186
that aligns the Basel Face Model’s albedo space [40] with 187
FLAME’s UV layout [18], which outputs a FLAME tex- 188
ture map A(α) ∈ Rd×d×3, where d = 256, given texture 189
parameters α ∈ R|α|. 190

Camera Model. The camera model is parameterized by 191
c = (s, t). An orthographic projection transformation is 192
used to project 3D mesh vertices into the image space, for- 193
mulated as u = sΠ(v) + t, where v is a vertex in the 194
3D mesh, Π ∈ R2×3 is the orthographic projection matrix, 195
s ∈ R is the isotropic scale, and t ∈ R2 is the 2D transla- 196
tion. 197

Illumination Model. The spherical harmonics illu- 198
mination model [43] is adopted to estimate the illumi- 199
nation conditions in the input image. The shaded face 200
texture is computed as U = U (A, l, N) with Ui,j = 201

Ai,j ⊙Hi,j : =Ai,j ⊙
∑9
k=1 lkHk(Ni,j), where ⊙ denotes 202

the Hadamard product, Ai,j , Ni,j , and Ui,j represent the 203
albedo, surface normal, and shaded texture in UV coordi- 204
nates respectively, H : R3 → R are the Spherical Harmon- 205
ics (SH) basis functions, and l ∈ R9 is the SH coefficient. 206
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Figure 4. Our silhouette vertex re-projection loss construction
method and its superiority. (a) Edge points (blue) selected from
all model vertices (red) based on vertex normals. (b) Candidate
region (blue) for boundary edge vertices excludes the nose and the
ear regions. (c) & (d) Two typical scenarios.

3.2. Generic Coarse Reconstruction207

We start by employing self-supervised learning to develop a208
base model that robustly reconstructs any in-the-wild image209
with fine details. Our base model first learns a coarse recon-210
struction. A vision transformer [16] Ec serves as the coarse211
encoder. It splits a 2D face image I into 16 × 16 patches,212
embeds each patch linearly and adds positional embeddings213
to form a sequence of tokens. A learnable “classification214
token” (z00 = xclass) is prepended to this sequence, which215
is subsequently passed through L transformer blocks. The216
output classification token z0L is passed through an MLP217
with one hidden layer to generate a latent code comprising218
FLAME parameters β, θ, and ψ, along with albedo param-219
eters α, camera parameters c, and lighting parameters l.220
With FLAME and albedo parameters, we generate a tex-221
tured 3D mesh, which, combined with camera and lighting222
parameters, enables differentiable rendering to produce the223
reconstructed facial image Ir (Fig. 3, left, green arrows).224

Silhouette Vertex Re-Projection Loss. The first 17225
landmarks ki ∈ R2, i ∈ 1, . . . , 17 from the annotated226
ground truth are 2D silhouette landmarks that should align227
with the outer edge of the 3D face from the current view.228
Our silhouette vertex re-projection loss naturally enforces229
this alignment. Compared to FLAME’s dynamic landmark230
marching approach [33], which may misalign landmarks231
under variations in facial shape and expression, our method,232
illustrated in Fig. 4.(c)&(d), achieves more accurate match-233
ing in two typical scenarios: (1) when the dynamic bound-234
ary landmark (yellow) provided by the FLAME model does235
not accurately locate on the model’s edge (green dashed236
line); and (2) when the FLAME algorithm necessitates237
matching the ground truth landmark (green) with the yellow238
point as indicated by the orange box, whereas our method239
matches it to the blue edge point shown in the green box,240
providing a more reasonable alignment.241

We define the ’zero-pose’ boundary landmarks of the242

FLAME model k̃i as those selected by FLAME when given243

a zero-pose input. If a landmark k̃i is non-occluded, it is 244
constrained using the vanilla landmark re-projection; if oc- 245
cluded, we match it to the nearest edge point in Ve and cal- 246
culate the L1 loss. Occlusion is determined by vertex nor- 247
mals: if the z-direction points outward, it is non-occluded; 248
otherwise, it is occluded. The determination of edge point 249
set Ve is as follows: if the normals of two vertices at the 250
ends of an edge have opposite signs in the z-direction, it 251
is considered that both of these vertices are located on the 252
edge of the 3D model, we then project them onto the im- 253
age plane (Fig. 4.(a)). Furthermore, as shown in Fig. 4.(b), 254
we exclude the edges of the nose and ear regions using pre- 255
segmented vertex labels Z ∈ {0, 1}5023. We refer to the 256
cleaned edge points as the 3D “silhouette vertices”. 257

The silhouette vertex re-projection loss is defined as fol- 258
lows: 259

Lsil =
∑

i,Nz,i>0

d(ki, k̃i) +
∑

i,Nz,i<0

min
ve∈Ṽe

d(ki,ve), (1) 260

where Nz,i = (Nk̃i
)
z
, k̃i, i ∈ 1, · · · , 17 represents the 3D 261

landmark coordinates that match the 2D landmark ki in the 262
zero-pose, N represents the vertex normal, (•)z denotes the 263

z-component. Ṽe = Ve ⊙ Z̃ ∈ R5023×2, Z̃ ∈ {0, 1}5023×2. 264

If Zi = 0, then Z̃i = (0, 0)T ; otherwise, Z̃i = (1, 1)
T . 265

Overall Losses for Coarse Reconstruction. The base 266
model learns coarse reconstruction using the total loss LC : 267

LC = Lsil+LinL+LspL+Lpho+Lper+Lreg+Lsc, (2) 268

where LinL is the landmark loss for static inner landmarks, 269
LspL is the special landmark pairs loss that is calculated on 270
a set of landmark pairs (e.g., upper/lower eyelid or lip land- 271
marks) to constrain features like eye and mouth opening 272
in a translation-invariant manner. Lpho is the photometric 273
loss commonly used in self-supervised methods [15, 18]. 274
Lper = Lid + Lemo + Llr combines three perceptual 275
losses to ensure high-level identity [18] and emotion con- 276
sistency [12], as well as accurate lip movements [19]. Lreg 277
includes regularization losses for β, ψ, and α. Finally, Lsc 278
is the shape consistency loss [18] 279

3.3. Generic Detail Reconstruction 280

Our base model subsequently learns a displacement map 281
D ∈ [−0.01, 0.01]d×d to refine the FLAME geometry. We 282
use an MAE [22] to capture animatable facial details (Fig. 3, 283
right), defined as D = A(I, TUV ,xd), where I is the in- 284
put image, TUV is the current face tension map, and xd is 285
a learnable, patch-wise detail latent that is shared across all 286
individuals. Unlike the vanilla MAE, we do not apply mask- 287
ing (i.e., use a zero masking ratio) because our task differs 288
significantly from standard MAE applications, requiring the 289
autoencoder to leverage all available information to accu- 290
rately recover facial details aligned with the input images. 291
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Facial Tension. Facial tension quantifies the vertex-wise292
compression or expansion on the 3D mesh caused by defor-293
mation from a neutral expression with a closed mouth to294
the current expression [5, 44]. We propose a new method295
for calculating the tension at vertex vi:296

tvi(S, S
′) =

1

Ei

j=1∑
Ei

ek∥e
′
j∥ − ek∥ej∥

ek∥e
′
j∥ + ek∥ej∥

, (3)297

where e1, · · · , eEi
are the Ei edges connected to vi in298

S = S (β,θ,ψ), and e′1, · · · , e′Ei
are the Ei edges299

connected to v′i in S′ = S (β,0,0). Here, ∥•∥ de-300
notes the edge length, and k is a fixed scaling fac-301
tor. Compression in the vertex neighborhood results in302
positive tension, while stretching yields negative tension.303
Our tension metric tvi(S, S

′) satisfies: 1) Antisymme-304
try: tvi(S

′, S) = −tvi(S, S
′); and 2) Boundedness:305

∀S, S′,−1 < tvi(S, S
′) < 1, making this tension calcula-306

tion more suitable as input to a neural network. The tension307
of S can be represented as {tvi(S, S′)}. Using the mapping308
relationship of UV coordinates from the FLAME mesh S,309
we derive the tension map TUV (β,θ,ψ) in UV space.310

Teacher-Student Strategy. Unwrapping the input im-311
age to UV space using the reconstructed coarse FLAME312
geometry creates a local correspondence between the im-313
age texture and the UV space displacement map. Thus,314
a UNet [51] is more suitable for estimating the displace-315
ment map from the UV image texture than an encoder-316
decoder or autoencoder, as its skip connections efficiently317
utilize local input information. However, the skip connec-318
tions make it difficult to animate facial details according319
to facial deformations, and non-frontal poses or occlusions320
may cause incompleteness in the unwrapped texture, lead-321
ing to missing details in the reconstruction. Autoencoder322
structures, on the other hand, have unique advantages in323
terms of animation and robustness to occlusion. Therefore,324
we train a shallow UNet detail reconstruction network as a325
teacher model, using its estimates as pseudo ground truth to326
guide our autoencoder in detail reconstruction. This teacher327
model offers more direct supervision compared to shape-328
from-shading photometric loss, as 3D facial details and 2D329
shading on rendered images do not have a one-to-one map-330
ping—multiple ways exist to add details that result in the331
same shadows in the rendered output.332

UNet Teacher Training. We train the UNet teacher net-333
work DUNet for detail estimation by minimizing:334

LUNet = LphoD + Lmrf + Lsmo + LregD. (4)335

where Lpho is the photometric loss for detail rendering [18].336
Lmrf is an ID-MRF loss [74], computed on the conv3 2337
and conv4 2 layers of VGG19 [63], encouraging the model338
to capture high-frequency geometric details. Lsmo is a339

smoothness loss prevents overly sharp or high-frequency ar- 340
tifacts in the reconstructed details. LregD is the detail reg- 341
ularization loss regularizes the estimated displacements to 342
reduce noise and artifacts. For more details, please refer to 343
the supplementary materials. 344

Teacher-Student Loss. With the UNet teacher network 345
trained, we can employ the teacher-student loss to aid the 346
training of our detail MAE A. The teacher-student loss 347
measures the similarity between the displacement given by 348
the pretrained teacher network UNet and the student net- 349
work A. The photometric loss and SSIM [75] loss are used: 350

LTchr = LphoD (D,DUNet) + Lssim (D,DUNet) . (5) 351

Overall Losses for Animatable Details. We train A 352
on video datasets [35, 71], where each mini-batch contains 353
images from different frames of the same video. This allows 354
the model to learn animatable facial details that vary with 355
changes in facial tension. In total, we optimize: 356

LanimD = LUNet + LTchr + Lsym + Ldc, (6) 357

where LUNet = LphoD +Lmrf +Lsmo +LregD includes 358
the losses used for training the UNet teacher model, which 359
are also employed during the training of the student model 360
A. Lsym is the soft symmetry loss employed to enhance the 361
model’s robustness in occlusion regions and reduce bound- 362
ary artifacts. Ldc is the detail consistency loss: 363

Ldc = LanimD(I,DUNet(I),D (I ′, TUV )), (7) 364

where, ensures that for images of the same individual, 365
swapping the input images makes no difference, as they 366
should convey the same identity information. Details from 367
I ′ and TUV should be consistent with image I and the 368
pseudo ground truth DUNet(I) from the teacher UNet. 369

3.4. Person-Specific Transfer 370

Given multiple images or videos of a person, we can trans- 371
fer the base model to yield a person-specific model. The ge- 372
ometry of the person-specific model better aligns with the 373
shapes and boundaries of the inputs, capturing the unique 374
facial details of the individual. The person-specific model 375
retains the base model’s robustness to pose and occlusion, 376
as well as valuable priors regarding dynamic details. 377

We achieve this transfer by incorporating lightweight 378
modules, δPS , known as “adapters” [23], between layers of 379
the base model (Fig. 3). The base model parameters remain 380
fixed, and only the adapter parameters are trained. Due 381
to the residual structure of the adapters, the modifications 382
to the base model are incremental. Positioned within the 383
transformer blocks, adapters δPS are added after the feed- 384
forward layer, preceding layer normalization. Additionally, 385
the learnable patch-wise detail latent xd and the layer nor- 386
malization parameters are also trained. More details are 387
provided in the supplementary materials. 388
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Table 1. Reconstruction error across different datasets.

Method 300-W [55] 300-VW [61] FaceScape [78]

boundary↓ inner↓ overall↓ boundary↓ inner↓ overall↓ inner error↓ overall error↓

DECA [18] 0.0576 0.0402 0.0446 0.0563 0.0426 0.0460 0.0477 (±0.0097) 0.0496 (±0.0103)
EMOCA [12] 0.0579 0.0467 0.0495 - - - - -

EMOCA-v2 [12, 19] 0.0590 0.0377 0.0430 0.0553 0.0507 0.0519 0.0585 (±0.0111) 0.0600 (±0.0109)
SynergyNet [76] - 0.0545 0.0545 - 0.0651 0.0651 0.0589 (±0.0117) 0.0785 (±0.0230)
3DDFA-v2 [20] - 0.0470 0.0470 - 0.0524 0.0524 0.0514 (±0.0104) 0.0700 (±0.0218)

Ours-base (w/o Lsil)† 0.0616 0.0401 0.0455 0.0660 0.0554 0.0580 - -
Ours-base 0.0559 0.0348 0.0401 0.0585 0.0456 0.0488 0.0404 (±0.0126) 0.0429 (±0.0128)

Ours-base w/ δPS - - - 0.0359 0.0217 0.0252 0.0253 (±0.0045) 0.0305 (±0.0060)
∗ A new version of EMOCA that incorporates perceptual lip reading loss [19] and produces better lip and eye alignment compared to the

original model [12].
† Our base model trained with DECA’s landmark re-projection loss [18], without the proposed silhouette vertex re-projection loss (Eqn. 1).

Person-specific transfer is also divided into a coarse389
stage and a detailed stage. Given multiple images or video390
frames of an individual, the model is trained using the loss391
function LC (Eqn. 2) in the coarse stage and teacher su-392
pervision loss LTchr (Eqn. 5) in the detail stage. On an393
NVIDIA GeForce RTX 3090, several minutes of training394
yields significantly improved reconstruction results. Spe-395
cially, since the occluded areas are not optimized by the396
losses during transfer, they retain the priors from the base397
model, allowing for reasonable generation of detailed fa-398
cial features based on the extensive face details learned by399
the base model. Moreover, due to the strong identity con-400
sistency of the coarse shape of the person-specific model401
across different frames, variations in shape between frames402
are more attributed to expression changes. This facilitates403
better decoupling of identity and expression parameters in404
the facial statistical model, leading to more precise ex-405
pression estimation and dynamic, expression-related details406
specific to the individual.407

4. Experiments408

4.1. Implementation Details409

Datasets. We train our model using the publicly available410
datasets BUPT-Balancedface [73], Celeb-DF (v2) [35], and411
MEAD [71]. For each image, facial landmarks are automat-412
ically annotated using HRNet [64], and unreliable images413
are filtered based on the estimated per-landmark heatmaps.414
We utilize a facial skin region segmentation method follow-415
ing [7] to obtain a mask of the facial skin area.416

Implementation Details. We implement our model in417
PyTorch [39], using the differentiable rasterizer from Py-418
torch3D [46] for rendering. We employ the Adam [29]419
optimizer with a learning rate of 1e-4 for the base model420
and 1e-3 for the person-specific transfer. Input images are421
cropped and aligned with RetinaFace [13], and resized to422
256× 256. Additional details on data augmentation, hyper-423
parameter settings (e.g., loss balancing weights), and expla-424
nations of the losses are in the supplementary materials.425

4.2. Quantitative Comparison 426

We compare the accuracy of our models in face align- 427
ment with publicly available facial reconstruction methods, 428
namely 3DDFA-v2 [20], SynergyNet [76], DECA [18] and 429
EMOCA [12]. To comprehensively demonstrate the supe- 430
riority of our method in coarse shape, encompassing fa- 431
cial contours and features, we conduct evaluations across 432
monocular image reconstruction (300-W dataset [55]), 433
monocular video reconstruction (300-VW dataset [61]), and 434
multi-view image reconstruction (FaceScape dataset [78]). 435
Note that we do not evaluate our method on 3D bench- 436
marks, as mainstream self-supervised face reconstruc- 437
tion approaches typically assume an orthographic camera 438
model, whereas 3D dataset photos are often taken from 439
close distances and exhibit significant perspective distor- 440
tion. Thus, directly comparing orthographic projection- 441
based reconstructions with ground truth would be unfair. 442

300-W Dataset. We employed the 300-W dataset to as- 443
sess the precision of our base model in single-image face 444
alignment. As shown in Tab.1 and Fig. 5, on 1424 cleaned 445
test images, our method achieves a lower RMSE error [55] 446
than previous works for both boundary and inner land- 447
marks. This is attributed to our novel silhouette vertex re- 448
projection loss, which establishes more precise correspon- 449
dences for the ground-truth 2D silhouette landmarks while 450
naturally mitigating the relatively large variance in manual 451
landmark annotations along the silhouette tangent. 452

300-VW Dataset. The 300-VW dataset provides a com- 453
prehensive benchmark for landmark tracking in long-term 454
’in-the-wild’ facial videos. Due to the semi-automatic an- 455
notation utilized in the 300-VW Challenge [9], discrepan- 456
cies exist between the annotated landmarks and their ac- 457
tual facial positions. Consequently, testing on the 300-VW 458
dataset serves primarily as a reference for evaluating face 459
reconstruction accuracy in videos with continuously chang- 460
ing poses. Methods exhibiting similar test errors should 461
be considered comparable. As depicted in Tab.1, our base 462
model delivers results on par with DECA, EMOCA-v2, and 463
3DDFA-v2 [20], while significantly surpassing Synergy- 464
Net [76]. Additionally, our person-specific models substan- 465
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Landmarks-gt 3DDFA-v2 SynergyNet DECA EMOCA-v2 Ours-base

Figure 5. Face alignment on 300-W [55]. From left to right:
Ground truth 2D landmarks, projected 3D landmarks estimated by
3DDFA-v2 [20] and SynergyNet [76], and ’2D landmarks’ pro-
vided by DECA [18], EMOCA-v2 [12], and our base model.

tially outperform both our base model and previous works.466
FaceScape Dataset. FaceScape [78] is a large-scale467

detailed 3D face dataset with multi-view images, camera468
parameters, 3D face scans, and parametric models with469
their registration parameters. To address the significant470
perspective distortion in the images, we used FaceScape’s471
parametric models to extract 3D facial landmarks and pro-472
jected them onto the image plane using the camera param-473
eters, establishing them as the ground truth for image fa-474
cial landmarks. As only 43 landmarks from FaceScape’s475
parametric model are applicable (numbered 17 ∼ 59 in the476
68-landmark annotation), we completed the set (17 facial477
boundary and 8 inner mouth circle landmarks) with the an-478
notation from HRNet [64]. As shown in Tab.1, our base479
model outperforms previous works in both inner and overall480
landmark accuracy. The transferred person-specific models481
further reduce the error across different views for each iden-482
tity significantly.483

4.3. Qualitative Comparison484

Given an in-the-wild image, our base model reconstructs485
a 3D face with animatable details. Given multiple images486
or a video of an individual, we transfer the base model by487
inserting trainable person-specific adapters. Our person-488
specific model achieves higher fidelity reconstruction of im-489
ages from that individual. We conduct visualized compar-490
isons with previous work in terms of self-supervised coarse491
shape reconstruction [12, 18, 20, 76], detail reconstruc-492
tion [12, 18, 72, 78], and detail animation [12, 18]. The in-493
put images are taken from the FaceForensics++ dataset [52],494
where the images and identities were never encountered495
during the training of the base model.496

Coarse Shape Reconstruction. Fig. 6 qualitatively497
compares the results of our base and person-specific models498
with state-of-the-art coarse reconstruction methods [12, 18,499

Input 3DDFA-v2 SynergyNet DECA EMOCA-v2 Ours-base Base w/ δps

Figure 6. Comparison on coarse shape reconstruction. From
left to right: Input image, 3DDFA-v2 [20], SynergyNet [76],
DECA [18], EMOCA-v2 [12], our base model, and our transferred
person-specific models.

20, 76] that are publicly available. Compared to these meth- 500
ods, our base model exhibits higher accuracy in fitting the 501
outer contour, pose, and facial feature representation. Our 502
person-specific model further enhances these advantages. 503

Detailed Reconstruction. Fig. 7 visually compares our 504
work to existing detailed reconstruction methods [12, 18, 505
72, 78]. Several methods [72, 78] optimize for the current 506
image, which limits inference speed and robustness to pose 507
and occlusion. Previous generic models that reconstruct an- 508
imatable geometric details [12, 18] struggle with the fidelity 509
of person-specific facial details, as seen in Fig. 7. Compared 510
to the base model (penultimate column), the transferred 511
person-specific models (last column) exhibit improved ac- 512
curacy in wrinkle details. 513

Input FaceScape FaceVerse DECA EMOCA-v2 Ours-base Base w/ δps

Figure 7. Comparison on detail shape reconstruction. From
left to right: Input image, FaceScape [78], FaceVerse [72],
DECA [18], EMOCA-v2 [12], our base model, and our person-
specific models.
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Figure 8. Comparison on face animation. Given a source image,
DECA [18] (row 2), EMOCA-v2 [12] (row 3), and our base (row
4) and person-specific (row 5) models can respectively generate
detailed 3D faces (green boxes). With a driving image (yellow
boxes), these models can drive the face to exhibit corresponding
expressions.

Detailed Face Animation. Fig. 8 demonstrates the ani-514
mation quality of our models compared to the state-of-the-515
art detail animation models [12, 18]. Our base model has516
learned a rich prior of expression-related details, surpass-517
ing existing works in realism and accuracy. Meanwhile,518
our transferred model captures person-specific details more519
finely while inheriting the animatability and robustness to520
in-the-wild driving images from the base model. This en-521
hances the model’s accuracy in reconstructing the specific522
individual, with more detailed and enriched features.523

4.4. Ablation Studies524

Silhouette Vertex Re-Projection Loss. We trained a525
network, Ours-base (w/o Lsil), without the proposed sil-526
houette vertex re-projection loss Lsil, using FLAME’s527
landmark marching algorithm [33] to apply the landmark528
re-projection loss across all 68 landmarks, as done by529
DECA [18]. The penultimate row in Table 1 shows the eval-530
uation results of Ours-base (w/o Lsil) on the 300-W [55]531
and 300-VW [61] dataset. Ours-base (w/o Lsil) performs532
slightly worse than DECA on the 300-W dataset in terms533
of overall error, which might be attributed to the different534
choice of training data (DECA uses VGGFace2 [4] and535
VoxCeleb2 [10]). In contrast, using Lsil improves edge and536
interior landmark errors by 9.1% and 13.2%, respectively,537
on 300-W. Fig. 9 visually shows the contribution of Lsil, in538
terms of boundary fitting accuracy.539

Teacher-Student Loss. We present an ablation study540
on the proposed teacher-student strategy for training the de-541
tail network. Fig. 9 demonstrates the contribution of the542
teacher-student strategy to the facial detail reconstruction.543
The network trained without the teacher supervision loss544
LTchr (Equation 5) (with other settings unchanged) gener-545

Input ResNet-D w/o LTchr Ours-base Input w/o Lsil w/ Lsil

Figure 9. Ablation studies. Left: Compared to MAE (Ours-
base), using convolutional (ResNet) and deconvolutional net-
works (ResNet-D) struggles to capture expression-dependent de-
tails. When training MAE without incorporating the teacher su-
pervision loss LTchr (Eqn. 5), it results in inaccurate wrinkles and
artifacts. Right: Without Lsil, the facial boundary does not prop-
erly align with the input image.

ates facial details with numerous unrealistic artifacts. This 546
occurs because the shape and the rendered RGB image do 547
not have a one-to-one correspondence, resulting in fewer 548
constraints on the optimization direction when training the 549
network using shape-from-shading loss, making it challeng- 550
ing to achieve acceptable results. 551

Network Architecture. We compared the effectiveness 552
of using convolutional (ResNet) and deconvolutional net- 553
works versus a MAE for detail reconstruction, both employ- 554
ing the teacher-student loss. For the former, we adopted 555
the same network architecture and dynamic detail driving 556
method as DECA [18]. Fig. 9 demonstrates that the MAE 557
captures expression-related details more effectively. This is 558
due to the superior long-range dependency capture and fea- 559
ture extraction capabilities of the MAE architecture we em- 560
ployed. Additionally, the transformer structure allows us to 561
insert adapter layers [23], enabling an incremental person- 562
specific transfer to retain the generalization capabilities of 563
the base model on face animation and occlusion. 564

5. Conclusion 565

We propose constructing person-specific 3D face recon- 566
struction models by integrating lightweight adapters into a 567
large-scale ViT-MAE base model. During the coarse recon- 568
struction stage, a novel silhouette vertex re-projection loss 569
is introduced to address the issue of “landmark marching”, 570
thereby correcting the misalignment of boundary facial 571
landmarks and achieving state-of-the-art performance. In 572
the detailed stage, a teacher-student loss is employed to 573
resolve the ambiguities inherent in the self-supervised 574
shape-from-shading approach, allowing the detail MAE 575
to effectively capture rich and accurate features. When 576
provided with multiple images or videos of an individual, 577
we can further transfer the base model to a person-specific 578
model, improving reconstruction accuracy and enabling 579
more effective decoupling of identity and expression 580
details. Our advantages in facial boundary and detail align- 581
ment, combined with the ability to animate details through 582
facial movements, make our approach highly suitable for 583
face animation, wrinkle transfer, and downstream appli- 584
cations such as face reenactment and virtual avatar creation. 585
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