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Abstract

Predicting future motion based on historical motion
sequence is a fundamental problem in computer vision,
and it has wide applications in autonomous driving and
robotics. Some recent works have shown that Graph Convo-
lutional Networks(GCN) are instrumental in modeling the
relationship between different joints. However, consider-
ing the variants and diverse action types in human mo-
tion data, the cross-dependency of the spatio-temporal re-
lationships will be difficult to depict due to the decoupled
modeling strategy, which may also exacerbate the problem
of insufficient generalization. Therefore, we propose the
Spatio-Temporal Gating-Adjacency GCN(GAGCN) to learn
the complex spatio-temporal dependencies over diverse ac-
tion types. Specifically, we adopt gating networks to en-
hance the generalization of GCN via the trainable adap-
tive adjacency matrix obtained by blending the candidate
spatio-temporal adjacency matrices. Moreover, GAGCN
addresses the cross-dependency of space and time by bal-
ancing the weights of spatio-temporal modeling and fusing
the decoupled spatio-temporal features. Extensive exper-
iments on Human 3.6M, AMASS, and 3DPW demonstrate
that GAGCN achieves state-of-the-art performance in both
short-term and long-term predictions.

1. Introduction

The aim of human motion prediction is to predict the

motion trend of the skeleton-based human body in the fu-

ture period from a given historical motion sequence, which

is a significant computer vision task with many potential

applications, such as autonomous driving, human-robotics

interaction, target tracking, and motion planning.

The skeleton-based human motion sequence is a struc-

tured time series, which means that the movement of a sin-

gle joint is affected by the coupling of spatial connections

with other joints and the temporal trajectory tendency. We

call these complex spatio-temporal relationships as cross-

*Corresponding author.

Figure 1. The illustration of our method. Given the historical in-

put human motion sequence, we try to predict the future motion

sequence by enhancing, balancing, and fusing two key factors, i.e.

the joint dependencies and the temporal correlations.

dependency. The challenges lie in motion prediction are

mainly two-fold. First, earlier literature based on Recur-

rent Neural Network(RNN), such as LSTM and GRU sug-

gests that predicting the long-term sequence will meet the

inherent error accumulation problem [5,7–10,14,27,32,34].

Though subsequent convolution-based approaches [3, 11,

17] for sequence-to-sequence prediction reduce the error of

long-term prediction to some extent, the error accumula-

tion is still a problem to be solved. Second, it is difficult to

model the spatio-temporal relationships since the skeleton-

based human motion is very complex and diverse. Rather

than using the basic motion representation(joint angle, posi-

tion, and velocity) directly or extracting the spatial features

of the motion with a simple fully connected layer, recent

studies try to use GCN to depict the spatio-temporal rela-

tionships [6, 18–20, 22, 24–26, 28].

Though GCN-based works are instrumental for solving

the long-term prediction problem to some extent, there are

two issues to be explored: 1. The inter-joint and inter-frame

relationships will change with the motion variance and ac-

tion types, therefore a stable adjacency matrix will lead to
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inherent poor generalization on multi-action motions; 2. Di-

rect concatenation of the decoupled spatial and temporal

features can not fully explore the cross-dependency of the

spatio-temporal relationships.

In this paper, we propose the Spatio-Temporal Gating-

Adjacency GCN(GAGCN) to learn the complex spatio-

temporal dependencies over diverse action types. To solve

the above two issues, our key idea mainly consists of two

parts, namely, the enhancing strategy and the balancing
and fusing strategy(shown in Fig. 1). First, given differ-

ent historical motion sequences, the gating network in our

GAGCN output corresponding blending coefficients which

are then used to blend the trainable candidate adjacency

matrices. The inter-joint and inter-frame relationships of

different motions are learned by the adaptive blended adja-

cency matrix dynamically, which enhances the generaliza-

tion of our model on multi-action motions. Second, the pro-

posed GAGCN can be utilized to balance the weight of spa-

tial and temporal modeling by scaling the number of candi-

date matrices. And the spatio-temporal features are fused to

mine the hidden cross-dependency of spatio-temporal rela-

tionships from the historical motion sequence.

Extensive experiments are conducted on Hu-

man3.6M [12], AMASS [23] and 3DPW [33]. We

demonstrate that our method outperforms state-of-the-art

methods in both short-term and long-term motion pre-

dictions. The main contributions of our work can be

summarized as follows:

1. To the best of our knowledge, we are the first to use the

gating network to enhance the generalization of GCN

on human motion prediction. The adaptive adjacency

matrix obtained by blending candidate matrices helps

to enhance the scalability of our network across multi-

action motions.

2. We capture the cross-dependency of space and time by

balancing and fusing the decoupled joint dependencies

and temporal correlations to learn the more expressive

embedding features.

3. We carry out extensive experiments on Human3.6M,

AMASS and 3DPW both quantitatively and qualita-

tively to demonstrate that the results of our method

outperform state-of-the-art works.

2. Related Works
Human Motion Prediction Traditional works on mo-

tion prediction attempt to use traditional statistical methods

such as hidden Markov models [2] and Gaussian process

hidden variable models [36], which have limitations in deal-

ing with the high-dimensional dynamics of human motion

and yield unsatisfactory results. With the development of

deep neural networks, exciting progress has been made in

motion prediction. Some works use RNN to model the tem-

poral correlations of human motion [5, 7–10, 14, 27, 32, 34].

However, these frame-by-frame methods perform poorly

on long-term motion prediction due to their inherent er-

ror accumulation problem, and RNN-based networks suf-

fer from first-frame discontinuity. To address these issues,

researchers have attempted to improve the prediction re-

sults of RNN-based networks using sequence-to-sequence

residual models [27], generative adversarial learning [10],

and imitation learning [34]. In contrast to frame-by-frame

framework, sequence-to-sequence method can effectively

reduce cumulative error in long-term prediction, which in-

cludes convolution-based [3, 11, 17] and attention-based

mechanisms [4, 24, 26]. The convolution-based approach

treats the historical sequence as an entirety and extracts mo-

tion features in spatial or temporal dimensions, while the

attention-based approach uses the attention model to learn

the joint-to-joint and frame-to-frame dependencies.

Recently, graph convolutional networks(GCN) [16] have

achieved state-of-the-art results in motion prediction [6,18–

20, 22, 24–26, 28]. Researchers use GCN with trainable ad-

jacency matrices to model the joint dependencies of human

motion. These methods learn the spatial properties of hu-

man motion by dividing the spatial properties into skeletal

connections and implicit non-physical connections between

individual joints [6], providing semantic prior knowledge

to the network [22], dividing the human body into multi-

scale [19].

Although the above works have made encouraging

progress, most works treat temporal and spatial modeling

in a decoupled manner and directly concatenate them while

the spatial dependencies of motion are often coupled with

the global temporal trajectory. To address this problem,

GAGCN is proposed to learn the cross-dependency of space

and time by balancing the weight of spatio-temporal mod-

eling and fusing spatio-temporal features, which helps us to

capture the spatio-temporal relationships simultaneously.

Spatio-Temporal Modeling for Human Motion To

the best of our knowledge, the first work to simultaneously

model spatio-temporal relationships is SRNN [14]. They

use a graph model to represent the human body, where the

joint nodes and edge nodes are composed of RNN, thereby

being the first to achieve long-term motion prediction. An-

other work that combines spatio-temporal modeling more

closely is STGCN [37], where they encode both the spatial

connection of human joints in a single frame and the tem-

poral connection of the same joint between frames into a

single adjacency matrix of GCN. Although their work has

made impressive progress in action recognition, it is lim-

ited by the constant adjacency matrix. Recently, a newly

proposed method named Space-Time-Separable GCN [28]

performs spatio-temporal modeling by factorizing the train-
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Figure 2. The overview of the proposed GAGCN network. We use Spatio-Temporal Gating-Adjacency GCN (GAGCN) as the encoder to

learn the spatio-temporal dependence of the historical motion sequence, and then use TCN as a decoder. We first feed the feature from the

previous layer into a spatial gating network and a temporal gating network respectively, obtaining the blending coefficients {wi
s} and {wi

t}.

Then we blend the spatial(temporal) adjacency matrix using the blending coefficients to create the adaptive spatial(temporal) adjacency

matrix. Finally, we fuse the spatial and temporal dependencies with the Kronecker product to output the features for the next layer.

able adjacency matrix into temporal and spatial to achieve

state-of-the-art performance in motion prediction.

Nonetheless, considering the variants and diverse action

types in human motion data, a stable adjacency matrix can

not effectively capture the changing dependencies between

joints and between frames, resulting in the poor generaliza-

tion of GCN. Mixture of Expert(MoE) [13, 15] is a tradi-

tional machine learning method that uses blending coeffi-

cients generated by a gating network to blend multiple ex-

perts. For human motion, the gating network acts as a mo-

tion classifier to automatically calculate the probability that

the input motion belongs to each class of motion and blends

the results of the relevant experts to obtain the optimal out-

put, which greatly improves the generalization of multiple

human motion models [21, 29–31, 38].

Inspired by MoE, we apply the gating network on the

adjacency matrices to enhance the generalization of GCN.

We first adopt several candidate adjacency matrices as ex-

perts in MoE, then we use the gating network to learn the

adaptive adjacency matrix by blending the candidate adja-

cency matrices according to different inputs. The adaptive

adjacency matrix can capture the dynamic relationships in

human motion, which is helpful to generalize across diverse

action types.

3. Our Method
Problem Formulation The purpose of skeleton-based

human motion prediction is to predict the future pose se-

quence given the historical pose sequence. We denote the

historical pose sequence as X1:T = {x1, x2, ..., xT } with T

frames, and the predicted motion sequence of future t time

steps as XT+1:T+t = {xT+1, xT+2, ..., xT+t} , where xi is

usually represented as 3D coordinates or joint angle of the

N body joints.

Overview As is shown in Fig. 2, we adopt the encoder-

decoder structure to make motion prediction. To better re-

trieve the cross spatio-temporal dependency of the histori-

cal motion sequence, we propose Gating-Adjacency GCN

(GAGCN) as the encoder which consists of three parts.

First, the features from the previous layer are fed into a spa-

tial gating network and a temporal gating network respec-

tively to get the blending coefficients {wi
s} and {wi

t} . Then

we blend the spatial adjacency matrix and temporal adja-

cency matrix by using the estimated blending coefficients

to obtain the adaptive adjacency matrix. Finally, we fuse

the spatial and temporal dependencies with the Kronecker

product to output the features for the next layer. For the de-

coder, given the latent motion representation after passing

through 6 GAGCN layers, we use the Temporal Convolu-

tional Networks(TCN) to predict the future sequence.

3.1. Review of GCN

In recent years, GCN-based networks have been widely

utilized for the modeling of spatio-temporal dependencies

of the structural time series and made inspiring progress,

which provides a means of human motion prediction.
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Specifically, we represent the skeleton-based pose as a

graph G = (V, E), in which V is the joint-node set, E is

edge set. The joint node features are 3D coordinates or

joint angles and the edge is related to the adjacency matrix

A ∈ R
N×N .

The state-of-the-art works use the trainable adjacency

matrix to replace the constant adjacency matrix, which can

model not only skeletal connections but also the implicit

dependencies of joints without natural connections, making

GCN more powerful for learning spatial dependencies. A

single layer with the trainable adjacency matrix can be ex-

pressed as:

H l+1 = f(H l;A,W ) = σ(AH lW l) (1)

where A, H l ∈ R
N×F l

and W l ∈ R
F l×F l+1

are the train-

able adjacency matrix, input feature and the trainable trans-

formation matrix, respectively.

3.2. Spatio-Temporal Gating-Adjacency GCN

Most prior works perform decoupled modeling and di-

rect concatenation for spatio-temporal relationships without

considering their cross-dependency, which makes it difficult

to accurately depict such complex spatio-temporal relation-

ships. Additionally, since the inter-joint and inter-frame re-

lationships will change with the motion variance and ac-

tion types, a stable adjacency matrix will lead to inherent

poor generalization on multi-action motions. Thus, we pro-

pose Spatio-Temporal Gating-Adjacency GCN(GAGCN) to

cope with these issues.

Gating Adjacency As shown in prior works [6, 18–20,

22, 24–26, 28], a stable trainable adjacency matrix can han-

dle spatio-temporal dependencies to some extent. However,

the relationship will be difficult to depict when it comes to

the variants and diverse action types in human motion data.

Our ”Enhancing Block”(shown in the right part of Fig. 2)

is motivated by the observation that the spatio-temporal re-

lationships are changing with the diverse variances and ac-

tion types. Therefore, we aim to find the adaptive spatio-

temporal relationships to cope with multi-action motion

prediction.

The Mixture of Experts(MoE) is a classic machine learn-

ing method, which is proven to be able to enhance the gen-

eralization of human motion models [21, 29–31, 38]. The

gating network is regarded as a motion classifier to auto-

matically calculates the probability of which motion class

the input motion belongs to. The results of the relevant ex-

perts are blended to obtain the adaptive output. Therefore,

the generalization of the human motion model is largely en-

hanced. Inspired by MoE, we apply the gating network on

GCN to learn the blended adjacency matrix, which is adap-

tive to the diverse motion variances and action types.

Different from the traditional MoE-based methods which

apply weighted sum on all of each expert’s network param-

eters, we only use the gating network to blend the adjacency

matrix. This can make our network lightweight and ensure

that only the feature learning process is affected while keep-

ing the feature transferring process unaffected. Specifically,

given the features from the previous layer, the gating net-

work in our GAGCN output several blending coefficient pa-

rameters, which can be denoted as follows:

{ωi} = Gating(H) = softmax(FC(H)) (2)

where FC denotes the 3 fully connected layers, softmax
is the activation function, H is the input feature, {ωi} is the

set of blending coefficients. Then the blending coefficients

are used to blend the candidate trainable adjacency matrices

to get the adaptive adjacency matrix:

A =
∑
i

Ai · ωi (3)

where {Ai} is the set of trainable adjacency matrices and A
is the adaptive adjacency matrix.

Spatio-Temporal Modeling Previous literature usu-

ally learn spatial and temporal dependencies in a decou-

pled manner and directly concatenate them, therefore the

cross-dependency of the spatio-temporal information is still

not fully explored. To address this issue, we propose the

balancing and fusion strategy shown in the left dotted box

in Fig. 2. The key idea is to adjust the number of candi-

date adjacency matrices to control and balance the weight

between the spatial and temporal modeling, and then fuse

spatio-temporal features with the Kronecker product.

Specifically, our balancing strategy is designed as fol-

lows: At first, we divide the adjacency matrix A into As and

At, as shown in the left of Fig. 2. Following [35], we treat

all channels of a joint as a node instead of regarding each

channel of a joint as a node, which can significantly reduce

the size of the adjacency matrix and maintain the correla-

tion of different channels of the same node. As ∈ R
N×N

represents the inter-dependencies between joint and joint,

whether they have skeletal connections or not. Meanwhile,

At ∈ R
T×T is trained to learn the frame-to-frame depen-

dencies in the historical sequence.

Then, based on Equ. 2 and Equ. 3, we adopt two gating

networks to learn the blending coefficients for spatial and

temporal respectively, then blend the candidate adjacency

matrices to obtain the adaptive adjacency matrix. We fur-

ther update these two equations into the following form:

{ωi
k} = Gatingk(H), Ak =

q∑
i

Ai
k · ωi

k, (4)

where Ak is the adaptive adjacency matrix , and the sub-

script k ∈ {s, t} indicate ”spatial” s or ”temporal” t. It is

worth noting that the number of candidate adjacency matri-

ces q ∈ {n,m} can be adjusted, which indicates the com-

plexity of spatial and temporal modeling. The proposed
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GAGCN can be utilized to balance the weight of spatial and

temporal modeling like a scale by adjusting the number of

candidate matrices. For example, we use n = 4, m = 3 on

Human 3.6M and n = 6, m = 4 on AMASS.

As for the fusing strategy, a single layer of GAGCN can

be formulated as follows:

H l+1 = σ((Al
s ⊗Al

t)H
lW l) (5)

where H l ∈ R
wl×N×T , W l ∈ R

wl×wl+1

, Al
s and Al

t are

the input feature, trainable transformation matrix, adaptive

spatial adjacency matrix and adaptive temporal adjacency

matrix of layer l, respectively. ⊗ denote the Kronecker

product. The temporal feature and spatial feature are fused

by the Kronecker product to ensure that we can find the hid-

den cross-dependency of spatio-temporal relationships from

the historical motion sequence.

The fused features are fed into the next layer for further

learning. Through 6 GAGCN layers, we extract flexible

and implicit dependencies between joints and frames repre-

sented as the spatio-temporal features. Finally, the features

are passed into TCN decoders to predict future sequence,

which is confirmed to make better performance and less er-

ror accumulation than RNN [1].

3.3. Training

Our training process is end-to-end and supervised. With

the help of the highly expressive spatio-temporal features

extracted by the GAGCN encoder, our network uses a rela-

tively simple loss function to get state-of-the-art results.

For 3D joint coordinates representation, we use MPJPE

loss:

LMPJPE =
1

N · t
t∑

i=1

N∑
j=1

‖p̃ij − pij‖2 (6)

where pij represents the predicted 3D coordinates of jth
joint in ith frame, and p̃ij is the corresponding ground truth.

For the angle-based representation, we use MAE loss:

LMAE =
1

N · t
t∑

i=1

N∑
j=1

| x̃ij − xij | (7)

where xij represents the predicted joint angle in exponential

map of jth joint in ith frame, and x̃ij is the corresponding

ground truth.

4. Experiments
In this section, we evaluate the proposed motion predic-

tion method. First, we will show the details of the used

benchmark dataset and baselines in Sec. 4.1. The quantita-

tive comparison results with the state-of-the-art method will

be given in Sec. 4.2. Then, we will analyze the main com-

ponents of our method in Sec. 4.3. Finally, we will show

the qualitative evaluation in Sec. 4.4. The implementation

details are shown in the supplementary material.

4.1. Datasets and Baselines

The datasets used in our experiments include Human

3.6M [12], AMASS [23], and 3DPW [33]. We will intro-

duce these 3 datasets as follows:

Human 3.6M Human 3.6M is the most used dataset in

the field of motion prediction. Human 3.6M has 3.6 mil-

lion 3D poses, consisting of 15 motion categories from 7

subjects. We down-sample the frame rate to 25Hz. Follow-

ing [24, 27], we use subjects 1,6,7,8,9 for training, subject

11 for validation and subject 5 for testing.

AMASS The Archive of Motion Capture as Surface

Shapes(AMASS) dataset is a recently published human mo-

tion dataset, which gathers 18 existing mocap datasets, such

as CMU, KIT, and BMLrub. We down-sample the frame

rate to 25Hz as for Human 3.6M. Then, following [24], we

select 8 datasets from AMASS for training, 4 datasets for

validation and 1 dataset(BMLrub) for testing.

3DPW The 3D Pose in the Wild dataset consists of both

indoor and outdoor actions, which contains 51,000 frames

captured at 30Hz. We down-sample the frame rate to 25Hz

as for Human 3.6M. We only use 3DPW to test the general-

ization of the models trained on AMASS.

Metrics and Baselines Our model can be trained on

both 3D coordinates representation and angle-based repre-

sentation. Thus, we evaluate the results on both 3D coordi-

nates errors and angle errors. Following [24], We adopt the

MPJPE metrics for 3D coordinates representation and MAE

angle error metrics for angle-based representation. We com-

pare our approach with Res-GRU [27], ConSeq2Seq [17],

LTD-10-25 [25], HRI [24], and STSGCN [28] on Human

3.6M and LTD-10-25 [25], HRI [24], and STSGCN [28]

on AMASS and 3DPW. We adapt the code and the pre-

trained models released by the authors to evaluate their re-

sults. Note that HRI [24] takes the past 50 frames as input

to predict the future 25 frames while others takes the past

10 frames as input to predict the future 25 frames.

4.2. Comparisons with the State-of-the-art Methods

Human 3.6M Because of the ambiguity in the angle-

based representation, most recent works use 3D coordi-

nates to measure the accuracy of motion prediction, i.e.

MPJPE. As in previous work, we predict future motion for

25 frames(1000ms) based on a 10(400ms) frames historical

motion sequence. We select 14 action types from Human

3.6M and randomly select 8 sequences for each motion to

calculate the average error. As in Table. 1, we show the

comparison of the short-term and long-term prediction of

our model and the baselines on Human 3.6M.

Our method outperforms all state-of-the-art models over

almost all time horizons. In particular, thanks to the adap-

tive adjacency matrix, our model makes larger improve-

ments in action types that are difficult to predict, such as

”Posing” and ”Sitting down”. Moreover, our method has
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Walking Eating Smoking

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

Res-GRU [27] 23.2 40.9 61.0 66.1 71.6 79.1 16.8 31.5 53.5 61.7 74.9 98.0 18.9 34.7 57.5 65.4 78.1 102.1

ConSeq2Seq [17] 17.7 33.5 56.3 63.6 72.2 82.3 11.0 22.4 40.7 48.4 61.3 87.1 11.6 22.8 41.3 48.9 60.0 81.7

LTD-10-25 [25] 12.6 23.6 39.4 44.5 51.8 60.9 7.7 15.8 30.5 37.6 50.0 74.1 8.4 16.8 32.5 39.5 51.3 73.6

HRI [24] 10.0 19.5 34.2 39.8 47.4 58.1 6.4 14.0 28.7 36.2 50.0 75.7 7.0 14.9 29.9 36.4 47.6 69.5

STSGCN [28] 10.7 16.9 29.1 32.9 40.6 51.8 6.8 11.3 22.6 25.4 33.9 52.4 7.2 11.6 22.3 25.8 33.6 50.0

Ours 10.3 16.1 28.8 32.4 39.9 51.1 6.4 11.5 21.7 25.2 31.8 51.4 7.1 11.8 21.7 24.3 31.1 48.7
Discussion Directions Greeting

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

Res-GRU [27] 25.7 47.8 80.0 91.3 109.5 131.8 21.6 41.3 72.1 84.1 101.1 129.1 31.2 58.4 96.3 108.8 126.1 153.9

ConSeq2Seq [17] 17.1 34.5 64.8 77.6 98.1 129.3 13.5 29.0 57.6 69.7 86.6 115.8 22.0 45.0 82.0 96.0 116.9 147.3

LTD-10-25 [25] 12.2 25.8 53.9 66.7 87.6 118.6 9.2 20.6 46.9 58.8 76.1 108.8 16.7 33.9 67.5 81.6 104.3 140.2

HRI [24] 10.2 23.4 52.1 65.4 86.6 119.8 7.4 18.4 44.5 56.5 73.9 106.5 13.7 30.1 63.8 78.1 101.9 138.8

STSGCN [28] 9.8 16.8 33.4 40.2 53.4 78.8 7.4 13.5 29.2 34.7 47.6 71.0 12.4 21.8 42.1 49.2 64.8 91.6

Ours 9.7 17.1 31.4 38.9 53.1 76.9 7.3 12.8 30.3 34.5 45.8 69.9 11.8 20.1 40.5 48.4 62.3 87.7
Phoning Posing Purchases

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

Res-GRU [27] 21.1 38.9 66.0 76.4 94.0 126.4 29.3 56.1 98.3 114.3 140.3 183.2 28.7 52.4 86.9 100.7 122.1 154.0

ConSeq2Seq [17] 13.5 26.6 49.9 59.9 77.1 114.0 16.9 36.7 75.7 92.9 122.5 187.4 20.3 41.8 76.5 89.9 111.3 151.5

LTD-10-25 [25] 10.2 20.2 40.9 50.9 68.7 105.1 12.5 27.5 62.5 79.6 109.9 171.7 15.5 32.3 63.6 77.3 99.4 135.9

HRI [24] 8.6 18.3 39.0 49.2 67.4 105.0 10.2 24.2 58.5 75.8 107.6 178.2 13.0 29.2 60.4 73.9 95.6 134.2

STSGCN [28] 8.2 13.7 26.9 30.9 41.8 66.1 9.9 18.0 38.2 45.6 64.3 106.4 11.9 21.3 42.0 48.7 63.7 93.5

Ours 8.8 13.5 25.5 28.7 41.1 66.0 10.1 17.0 35.5 45.1 63.3 99.1 11.9 20.7 41.8 47.6 62.1 85.1
Sitting Sitting Down Taking Photo

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

Res-GRU [27] 23.8 44.7 78.0 91.2 113.7 152.6 31.7 58.3 96.7 112.0 138.8 187.4 21.9 41.4 74.0 87.6 110.6 153.9

ConSeq2Seq [17] 13.5 27.0 52.0 63.1 82.4 120.7 20.7 40.6 70.4 82.7 106.5 150.3 12.7 26.0 52.1 63.6 84.4 128.1

LTD-10-25 [25] 10.4 21.4 45.4 57.3 78.5 118.8 17.0 33.4 61.6 74.4 99.5 144.1 9.9 20.5 43.8 55.2 76.8 120.2

HRI [24] 9.3 20.1 44.3 56.0 76.4 115.9 14.9 30.7 59.1 72.0 97.0 143.6 8.3 18.4 40.7 51.5 72.1 115.9

STSGCN [28] 9.1 15.1 29.9 35.0 47.7 75.2 14.4 23.7 41.9 47.9 63.3 94.3 8.2 14.2 29.7 33.6 47.0 76.9

Ours 9.3 14.4 29.6 38.5 45.4 71.1 14.1 24.8 40.0 47.4 62.8 84.1 8.5 13.9 28.8 35.1 45.2 70.0
Waiting Walking Dog Average

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

Res-GRU [27] 23.8 44.2 75.8 87.7 105.4 135.4 36.4 64.8 99.1 110.6 128.7 164.5 25.3 46.8 78.2 89.9 108.2 139.4

ConSeq2Seq [17] 14.6 29.7 58.1 69.7 87.3 117.7 27.7 53.6 90.7 103.3 122.4 162.4 16.6 33.5 62.0 73.5 92.1 126.8

LTD-10-25 [25] 10.5 21.6 45.9 57.1 75.1 106.9 22.9 43.5 74.5 86.4 105.8 142.2 12.6 25.5 50.6 61.9 81.1 115.8

HRI [24] 8.7 19.2 43.4 54.9 74.5 108.2 20.1 40.3 73.3 86.3 108.2 146.9 10.4 22.1 46.5 57.5 76.6 112.3

STSGCN [28] 8.6 14.7 29.6 35.2 47.3 72.0 17.6 29.4 52.6 59.6 74.7 102.6 10.2 17.3 33.5 38.9 51.7 77.3

Ours 8.5 14.1 29.8 33.8 45.9 69.3 17.0 28.8 50.1 59.4 70.1 91.3 10.1 16.9 32.5 38.5 50.0 72.9

Table 1. MPJPE error comparison for both short-term and long-term predictions on 14 action types in Human 3.6M. The best results are

shown in bold. Our method outperforms all baselines on average over all time horizons. It is worth noting that our model makes larger

improvements in action types that are difficult to predict, such as ”Posing” and ”Sitting down”. Moreover, our method has significant

advantages in long-term (1000ms) motion prediction.

significant advantages in long-term (1000ms) motion pre-

diction. Nonetheless, there are very few time points where

our method does not perform best. These time points are in

short term with small prediction errors for all methods, thus

it is reasonable to have a marginal error. The bottom right of

Table. 1 is the average error of all action types, where our

method performs better than all the comparative methods

for whole time horizons.

Additionally, we demonstrate the average angle errors on

Human 3.6M in Table. 2 with the same setting for MPJPE

metrics. The results illustrate that our method also achieves

state-of-the-art prediction in angle-based representation.

AMASS & 3DPW We demonstrate the short-term and

long-term prediction results on AMASS-BMLrub in Ta-

ble. 3. We train the model on 8 datasets from AMASS and

use BMLrub for testing. AMASS has much more subjects

and motion sequences than Human 3.6M, which is more

suitable to test the generalization of the model. Our method

outperforms all the baselines on AMASS, which proves that

our model can indeed enhance the generalization of GCN.

The model trained on AMASS is further tested on

3DPW, and the results are shown in Table. 4. The sig-

nificantly better results compared with other methods pro-

vide another strong evidence of our model’s generalization

across different datasets.

4.3. Ablation Study

We perform ablation studies to evaluate the effect of two

key component in our method, i.e. enhancing block, bal-

ancing block. The effect of fusion block can be found in the
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Human 3.6M-average

milliseconds 80 160 320 400 560 1000

Res-GRU 0.36 0.67 1.02 1.15 - -

conSeq2Seq 0.38 0.68 1.01 1.13 1.35 1.82

LTD-10-25 0.30 0.54 0.86 0.97 1.15 1.59

HRI 0.27 0.52 0.82 0.94 1.14 1.57

STSGCN 0.24 0.39 0.59 0.66 0.79 1.09

Ours 0.24 0.38 0.54 0.65 0.74 1.02

Table 2. Average MAE angle error comparison on Human

3.6M(note that Res-GRU [27] has no long-term prediction results).

The best results are shown in bold. Our method achieves state-of-

the-art prediction in angle-based representation

AMASS-BMLrub-average

milliseconds 80 160 320 400 560 1000

LTD-10-25 11.0 20.7 37.8 45.3 57.2 75.2

HRI 11.3 20.7 35.7 42.0 51.7 67.2

STSGCN 10.0 12.5 21.8 24.5 31.9 45.5

Ours 10.0 11.9 20.1 24.0 30.4 43.1

Table 3. Average MPJPE error comparison on AMASS-BMLrub.

The best results are shown in bold. Our method outperforms all

the baselines, which proves that our model can indeed enhance the

generalization of GCN across datasets.

3DPW-average

milliseconds 80 160 320 400 560 1000

LTD-10-25 12.6 23.2 39.7 46.6 57.9 75.5

HRI 12.6 23.1 39.0 45.4 56.0 73.7

STSGCN 8.6 12.8 21.0 24.5 30.4 42.3

Ours 8.4 11.9 18.7 23.6 29.1 39.9

Table 4. Average MPJPE error comparison on 3DPW. The best re-

sults are shown in bold. The significantly better results than other

methods provide another strong evidence of our model’s general-

ization.

supplementary material.

Effect of Enhancing Block We have shown the gener-

alization of our method across different datasets in 4.2, and

then we will further show the generalization of our method

across different action types. The results are shown in Ta-

ble. 5. We explore the generalization of our model by test-

ing on unseen action types(Walking Together). The results

in the second row of the table are significantly better than

the first row, indicating that GAGCN helps to predict unseen

action types. And the results in the second and third rows

are very close, indicating that GAGCN performs accurate

predictions on unseen action types.

Effect of Balancing Block To demonstrate the effect

of balancing block, we set up three contrast experiments

against our method(shown in Table. 6).: 1. Contrast experi-

ment 1 illustrates the necessity of using gating network both

Human 3.6M-Walking Together

Model Motion 80 160 320 400 560 1000

S&TGCN unseen 10.8 20.7 38.1 42.7 53.1 69.8

GAGCN unseen 8.9 14.0 26.8 31.1 38.0 51.6

GAGCN seen 8.8 13.8 26.2 29.9 37.8 50.4

Table 5. Ablation study for the effect of enhancing block.

”GAGCN” denotes our proposed model and ”S&TGCN” denotes

GCN with stable spatial and temporal adjacency matrix, and other

experimental settings are the same for both models. ”seen” and

”unseen” denote that whether the action type(Walking Together)

is seen during training or not. The results show that our method

can enhance the generalization across unseen action types.

Human 3.6M-average

milliseconds 80 160 320 400 560 1000

Our method S4, T3 10.1 16.9 32.5 38.5 50.0 72.9

CE1
S4, T1 12.5 19.9 38.4 51.3 68.6 93.9

S1, T3 13.1 22.3 40.9 54.1 67.1 91.1

CE2 S8, T6 11.4 18.1 33.6 42.5 53.7 76.9

CE3 S3, T4 10.3 16.9 33.1 39.2 52.1 75.3

Table 6. Ablation for the effect of balancing block. S and T denote

spatial and temporal adjacency matrix, and the subscripts indicate

the number of matrices. ”CE” denotes the contrast experiment.

The best results are shown in bold.

spatially and temporally. The better results of our method

indicate that applying gating network in time and space si-

multaneously helps to model spatio-temporal dependencies

more effectively. 2. Contrast experiment 2 shows that more

candidate matrices are not always better. We empirically

classify the motions in human 3.6M into roughly four cate-

gories of similar motions, thus four spatial candidate matri-

ces are used. Too many candidate matrices will increase the

complexity of the network and cause under-fitting. 3. Con-

trast experiment 3 says that the weight of spatio-temporal

modeling affects the accuracy of the prediction results in-

deed, and that is why we balance them by adjusting the

number of candidate matrices.

4.4. Qualitative Evaluation

Visualization of Predicted Sequence We visualize the

predicted sequence on Human 3.6M and compare them

with Ground Truth in Fig. 3. For periodic motions such

as ”Walking” and ”Walking Together”, our predictions are

almost identical to Ground Truth over the entire time hori-

zons. Meanwhile, for more complex non-periodic motions

like ”Discussions” and ”Posing”, our predictions match the

Ground Truth well in the short term, and the long term pre-

dictions are also quite close to GT despite some acceptable

errors on the left leg of ”Discussions” and the right arm of

”Posing”. Non-periodic motion prediction is a more chal-
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Figure 3. Visualization of predicted sequences against Ground Truth sequences for 80, 160, 320, 560, 720, 880, 1000ms. We demonstrate

the prediction of ”Walking”, ”Walking Together”, ”Discussions”, and ”Posing”, where the green and purple lines indicate prediction and

the red and blue lines indicate the corresponding Ground Truth.
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Figure 4. Visualization of average spatial blending coefficients for

4 action types. ω1, ω2, ω3, ω4 denote the 4 blending coefficients,

respectively. Different action types(like ”Walking”, ”Discussions”

and ”Sitting Down”) have different coefficients distribution while

the coefficients of similar motions are similarly distributed(like

”Walking” and ”Walking Together”).

lenging problem, especially when the subjects in the testing

dataset perform in different ways compared with subjects

in the training dataset. The visualization of predicted se-

quences on AMASS is shown in the supplementary mate-

rial.

Visualization of Spatial Blending Coefficients More-

over, we randomly select 16 sequences from a single ac-

tion type to compute the average spatial blending coeffi-

cients(visualization of temporal blending coefficients can

be found in supplementary material). Then we do the same

operation on several action types and visualize them(seeing

Fig. 4). We can see that there is a clear difference in the

blending coefficients distribution for different action types.

The blending coefficients for ”Walking Together” are de-

rived from the partial train model in 4.3. Since ”Walking

Together” and ”Walking” are similar periodic motions, their

blending coefficients are similarly distributed with higher

ω3 and ω4 values. That is why our model can achieve

accurate prediction results for ”Walking Together” without

seeing it before. Non-periodic motions like ”Discussion”

and ”Sitting Down” have higher ω2 values, but their coeffi-

cient distributions are very different. Given different inputs,

GAGCN can generate the corresponding blending coeffi-

cients, which helps to learn the adaptive adjacency matrix

for diverse action types. The visualization of adaptive adja-

cency matrix can be found in the supplementary material.

5. Conclusion and Future Work
In this paper, we propose a novel method called GAGCN

to solve motion prediction for multi-action motions. We use

the gating network to learn adaptive adjacency matrix by

blending candidate adjacency matrices, which effectively

enhance the generalization on multi-action motions. Mean-

while, GAGCN can balance the spatio-temporal modeling

by adjusting the number of candidate matrices. Combined

with the fusion of spatio-temporal features, we can extract

the cross-dependency of spatial and temporal relationships

to achieve state-of-the-art results on several widely used

benchmark datasets. In the future, we will study how to

automatically balance the weight for spatio-temporal mod-

eling instead of manually adjusting them and explore a more

efficient approach to enhance the generalization of GCN.
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