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Abstract

3D human pose estimation is a fundamental prob-
lem in artificial intelligence, and it has wide ap-
plications in AR/VR, HCI and robotics. How-
ever, human pose estimation from point clouds still
suffers from noisy points and estimated jittery ar-
tifacts because of handcrafted-based point cloud
sampling and single-frame-based estimation strate-
gies. In this paper, we present a new perspective on
the 3D human pose estimation method from point
cloud sequences. To sample effective point clouds
from input, we design a differentiable point cloud
sampling method built on density-guided attention
mechanism. To avoid the jitter caused by previ-
ous 3D human pose estimation problems, we adopt
temporal information to obtain more stable results.
Experiments on the ITOP dataset and the NTU-
RGBD dataset demonstrate that all of our con-
tributed components are effective, and our method
can achieve state-of-the-art performance.

1 Introduction
3D human pose estimation from point clouds has been a fun-
damental research field in recent years, and it can be ap-
plied to many applications such as human-computer interac-
tion, motion retargeting and virtual avatar control. Regard-
ing the input of 3D human pose estimation, depth maps or
point clouds are often preferable. First, point clouds contain
3D spatial information of humans, which can make the es-
timated human pose to be scale correct. Second, the point
clouds’ quality is generally invariant under the ambient light
changes, which leads to more potential application scenarios
such as indoor augmented reality. Finally, depth sensors are
widely available in cellphones and tablet PCs, which require
robust algorithms to utilize these depth sensors.

Although great progress has been made in the field of
3D human pose estimation, there are still several challenges.
First, the noisy point clouds from depth cameras may cause
difficulties in learning a proper human pose model. Second,
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the 3D human pose estimation task is difficult due to the am-
biguity caused by occlusion and self-occlusion. Third, exist-
ing point cloud-based methods mainly focus on pose estima-
tion from a single frame. However, due to the lack of tempo-
ral smoothness enforcement, current methods may generate
results with shaking artifacts on continuous point cloud se-
quences.

In this paper, we propose a 3D human pose estimation
method from point cloud sequences. Inspired by the point
cloud-based framework from a single frame [Zhang et al.,
2020], we design a new two-stage human pose estimation
pipeline using point cloud sequences. The point cloud sam-
pling module is used to select effective point clouds in an
adaptive manner that can be informative to the human pose
estimation task. To address noisy point cloud issues, we ob-
serve that our point sampling strategy can enhance the qual-
ity of the input point clouds. Therefore, we first estimate the
point cloud sampling centers based on a density-guided at-
tention mechanism, and use these center points to sample the
pose-aware point clouds. To address jittery artifacts and oc-
clusion problems, we use temporal consistency to constrain
the results, thereby generating accurate human pose results.
Experiments demonstrate that our method can achieve state-
of-the-art performance efficiently on ITOP and NTU-RGBD
datasets.

The main contributions of our work can be summarized as
follows:

1. We propose a density-guided and attention-based differ-
entiable point cloud sampling method. The sampling
method can help us select the point clouds in the human
foreground and provide more effective point cloud input
for human pose estimation.

2. We propose a 3D human pose estimation method for
point clouds using temporal sequences. Compared to ex-
isting human pose estimation methods, our method can
achieve better and smoother human pose results.

3. Based on our method, we build a real-time human cap-
ture system that can enable smooth human motion cap-
ture. Experiments demonstrate that our method can
achieve state-of-the-art performance in both accuracy
and efficiency.
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2 Related Works
2.1 Human Pose Estimation
In the following part, we review related state-of-the-art meth-
ods that use a single image as input and several representative
3D human pose estimation methods that leverage temporal
information.
The State-of-the-Art Methods. For 3D human pose es-
timation from depth maps, previous methods mainly use
statistic models to estimate the human pose from the depth
maps [Ding and Fan, 2014]. Recently, the state-of-the-
art methods have mainly been based on representations of
depth maps [Moon et al., 2018; Zimmermann et al., 2018;
Zhang et al., 2020]. The method [Moon et al., 2018] treats
depth maps as point clouds and converts them into 3D voxel
grids; a 3D CNN is then used to estimate the 3D human
poses. However, this method requires prior extraction of the
background points. Similarly, the work [Zimmermann et al.,
2018] first uses an RGB image to voxelize the point clouds
and uses a Res2Net-like [Gao et al., 2019] network to esti-
mate the 3D human pose. Recently, Zhang et al. [Zhang et
al., 2020] have proposed the use of a hybrid 2D/3D represen-
tation of depth maps and a generative-like method.
Methods using Videos as Input. The 3D human pose es-
timation methods using videos can be classified into two cat-
egories. The first type uses the temporal information af-
terwards and uses it to smooth the estimated results. The
work [Lin et al., 2017] proposes a multistage sequential re-
finement network to estimate 3D human pose sequences.
Dabral et al. [Dabral et al., 2017] use a fully connected net-
work to refine coarse input poses. In the work [Rayat Im-
tiaz Hossain and Little, 2018], the authors use temporal co-
herent 2D poses to estimate a sequence of 3D poses. The
second type uses the temporal information and extracts the
temporal-related features from the sequence. Kanazawa et
al. [Kanazawa et al., 2019] design a semisupervised pipeline
to learn the 3D human dynamics from videos. In [Pavllo et
al., 2019], the authors propose a fully convolutional architec-
ture that utilizes temporal convolution to estimate 3D human
poses in videos. In [Arnab et al., 2019], the authors first es-
timate the 2D joint position and the SMPL model parame-
ters for each frame and use the bundle adjustment to estimate
smooth results. In [Bertasius et al., 2019], the authors focus
on learning features from both the labeled frame and the unla-
beld frame to perform dense temporal pose propagation and
estimation. Recently, Liu and colleagues [Liu et al., 2021]
propose a human pose estimation method for a multiframe
scenario, in which they leverage the temporal information be-
tween video frames to facilitate keypoint detection.

2.2 Deep Learning on Point Clouds
Recent 3D deep learning research on processing 3D objects,
such as point clouds and mesh models, can be roughly divided
based on the representation of the 3D object. In the following
part, we only review several point cloud-based 3D deep learn-
ing methods due to the efficiency and excellent performance
of point cloud representations.

The point cloud-based methods mainly use the point clouds
as input and can extract features from the input point cloud

coordinates and other information such as the surface nor-
mal. These methods were originally designed for point
cloud segmentation or classification tasks [Qi et al., 2017a;
Qi et al., 2017b]. Recently, there have also been works using
point cloud learning methods for object detection tasks [Zhou
and Tuzel, 2018; Qi et al., 2019]. Qi et al. [Qi et al., 2017a]
propose an end-to-end network named PointNet, which uses
the point coordinates and the surface normal as inputs and
maps them to a higher-dimensional space using a multilayer
perceptron. In the work [Qi et al., 2017b], the authors further
use a partition-sampling module and feed the output recur-
sively to this module. On the other hand, they also propose to
use the 2D information to accelerate the 3D detection in a hy-
brid camera [Qi et al., 2018]. Liu and colleagues [Liu et al.,
2019b] propose a new method that uses the points to repre-
sent the point clouds while performing the convolution on the
voxel-based representation. Recently, Lang and colleagues
propose a differentiable point cloud sampling method [Lang
et al., 2020] that predicts the sampling centers and achieves
state-of-the-art performance.

The differences between our method and the other meth-
ods are twofold. First, we propose the first 3D human pose
estimation framework from point cloud sequences, and we
propose pose consistency loss to smooth the pose estimation
results. Second, we introduce an attention mechanism into
the sampling phase, which improves the performance of the
3D pose estimation task.

3 Method
We use the two-stage pipeline for human pose estimation. As
can be seen from Fig. 1, our pose estimation method can be
roughly divided into two parts, the density-based point cloud
sampling module and the sequential 3D human pose estima-
tion module. In the point cloud sampling module, we present
a differentiable point cloud sampling using a density-guided
attention mechanism. In the 3D human pose estimation mod-
ule, we estimate 3D human poses from the sampled point
cloud sequences. The point sampling network and 3D human
pose estimation network are trained in an end-to-end manner
to obtain optimal human pose estimation performance.

3.1 Point Cloud Sampling Module
This module mainly aims to sample an effective subset from
the input point clouds, which can benefit the human pose es-
timation task. The original depth maps contain redundant and
noisy pixels, which may increase the computational cost and
reduce the human pose estimation accuracy. For example, if
the background pixels or the noise pixels are mixed into the
point clouds for human pose estimation, then the human pose
estimation can often exhibit significant estimation errors. In-
spired by [Lang et al., 2020], we resolve this problem by de-
signing a new differentiable sampling strategy with a density-
guided attention mechanism. The input of our point cloud
sampling module is a depth map that contains persons and
backgrounds, and the output is the pose-aware point cloud.

Our density-guided and attention-based point cloud sam-
pling strategy has two steps. First, we aim to generate a set
of sampling centersR with input point clouds P such that the



Figure 1: Overall pipeline of our 3D human pose estimation method. The network consists of two modules. The density-based point cloud
sampling module obtains the downsampled pose-aware point clouds and the original point cloud weights. The sequential pose estimation
module extracts the spatiotemporal features of the pose-aware point cloud sequences and learns 3D human pose estimation.

neighboring points of R in the original point clouds P per-
form better in the human pose estimation task. Second, we
sample the point clouds with the guidance of the sampling
centers R, predicted weights wpred and original point clouds.
The process can be seen in the upper left of Fig. 1.

Sampling Center Generation. The aim of sampling cen-
ter generation is to obtain a subset of point clouds to serve as
the sampling centers. We expect that the neighboring point
clouds of sampling centers in the input point clouds are in the
human foreground instead of background points. To obtain
effective point cloud sampling centers, we take the relation-
ship between the sampling center points and their neighbor-
hood into consideration, and design a density-guided atten-
tion mechanism to adaptively generate the sampling results.

The key idea is built upon two definitions, core points and
boundary points. As shown in Fig. 2, the core points are of-
ten the points inside the human surface, and the boundary
points often belong to the human boundary. The points that
are neither the core points nor the boundary points are usually
less important or noisy because these points are sparse in 3D
space and contain little human pose-aware information.

A point r is called a core point unless there are M points
in the neighborhood of r within the distance of ε. This is
shown as the red solid circles in the middle of Fig. 2. The red
solid circles always have M original points (in the figure, we
use M = 1) within the given radius of ε (shown as the circle
with the dashed line.). The boundary points are the points
that have less than M points but more than one core point in
the distance threshold ε. The boundary points are shown as
green solid circles in Fig. 2. The core point and boundary
point can be formulated as follows: A point r is a core point
if |Uo(r, ε)| ≥ M , where |Uo(r, ε)| is the number of points
within a sphere of radius ε and a center of sampled point r. A
point r is a boundary point if there exists r′ ∈ Uo(r, ε) such
that IC(r′) = 1. The definition of the indicator function IC
that determines whether point r belongs to the core points C

Figure 2: Illustration of our point cloud sampling module. Using the
original points as input (shown as solid and hollow gray circles in the
left), we first generate a set of intermediate sampling centers (shown
in red, green and gray colors) and then use the predicted weight
(Eq.(3)) with the sample network to obtain the final sampling center
(shown in purple) with Eq.(2).

is given as follows:

IC(r) =

{
1, if r is a core point

0, if r is not a core point
(1)

Point Cloud Sampling. The density-based sampling strat-
egy can generate compact sampling point centers from the
original point clouds, but it overlooks the human body con-
text and may still obtain points on background points with
high density. Next, we present a point cloud sampling method
to adaptively select the human-aware point clouds.

As shown in the left of Fig. 2, the original point pi ∈ P
has a ground truth binary label wgt

i based on whether they are
background points. Our sample network will simultaneously
predict original point clouds’ weights wp while generating
sampling centers.

The sampling centers are just an approximate subset of
original point clouds P . Therefore, to obtain the final sam-
pled point clouds, we use the soft projection operation, simi-
lar to the work [Lang et al., 2020]. The soft projection oper-
ation is shown in the right of Fig. 2. In the training process,
the projected point r∗ ∈ R∗ is obtained by:

r∗ =
∑

i∈NP (r)

ωipi (2)



where r is the generated point in R, NP (r) represents the k-
nearest neighbor of point r in P , and r∗ is the projected gen-
erated point cloud set for the pose estimation module. Dif-
ferent to [Lang et al., 2020] that uses only the distance as
the weight parameter, our parameter ωi is defined by the pre-
dicted weight wj together with the distance between r and its
neighbors as follows:

ωi =
wp

i e
−d2

i /t
2∑

j∈NP (r) w
p
j e
−d2

j/t
2

(3)

where di represents the Euclidean distance between point r
and neighbor pi. If wp

i is close to zero (shown as the dash
arrow in Fig. 2), which means the point i is a noisy point, it
will get smaller ω even if it is closer than the other neigh-
borhood points in Euclidean distance. The parameter t will
convergence to zero as the training time increases. During
the testing stage, for each r ∈ R we directly sample the near-
est neighbor from the original point clouds P as the projected
point with the weighted distance.
Loss Function. We present a density loss function to ob-
tain the generated sampling centers to be the core points or
boundary points. Following [Lang et al., 2020], we introduce
the distance loss function to constrain the generated points to
have sufficiently large coverage. We also use a mask loss to
constrain the generated points to be human foreground points.

Density Loss. The density loss function aims to minimize the
generated noisy points’ distance to the density cluster in the
space. The density loss function can be defined as follows:

Lden =
1

|R|

|R|∑
i=1

(1− IC(ri))(1− IB(ri))D(ri) (4)

where IB(r) is the indicator function showing whether point
r belongs to the boundary point B, the definition is similar to
that in equation 1, D(r) is the L2 distance function between
point r and its nearest core point C(r), which is activated if
the point r is a noisy point. The optimal situation is that the
generated points are either core points or boundary points, so
that the value of (1− IC(r))(1− IB(r)) is zero.

Distance Loss. Inspired by [Lang et al., 2020], we also use
the average nearest neighbor loss(the Hausdorff distance) LH

and the maximal nearest neighbor loss(the Chamfer distance)
LC to enforce the generated sampling centers R to be close
to the original point clouds P

LH(R,P ) =
1

|R|
∑
r∈R

min
p∈P
‖r − p‖22

LC(R,P ) = max
r∈R

min
p∈P
‖r − p‖22

(5)

where r and p are two points in point cloud sets R and P .

Mask Loss. Only using the density or the distance as the con-
straints of the network may not be sufficient since the back-
ground may also satisfy such constraints. To make our net-
work sample the human foreground points, we use the mask
loss using the cross-entropy loss function as follows:

Lmask =
1

|P |

|P |∑
j=1

−wgt
j log(wp

j )−(1−wgt
j ) log(1−wp

j ) (6)

After we have the definitions of all the loss terms, we can
give the overall loss function of our point cloud sampling
module as follows:

Lsample = α1Lden + α2LH + α3LC + α4Lmask (7)

where the constant αi is the loss weight. In our experiment,
we set {αi}4i=1 to 1.

3.2 3D Human Pose Estimation Module
The pose encoding stage aims to encode the pose-aware point
clouds to learn 3D human poses. The right part of Fig. 1
shows our prediction network. We first feed the sampled point
clouds of each frame into PointNet to extract pose-aware fea-
tures. Then, we concatenate them with the initial poses and
use a long short-term memory (LSTM) network to model the
temporal correlation and estimate 3D human poses.

Pose-aware Feature Extraction. Similar to the
work [Zhang et al., 2020], we treat the joint offset be-
tween the initial pose and the final pose as our regression
target so that we can easily encode the temporal sequence
and use a weakly supervised manner for the sequential data.

In our network, we extract the features frame by frame.
For frame t, we feed the normalized point clouds pnorm to
PointNet to extract the pose-aware features. PointNet is a
deep neural network that focuses on solving the point cloud-
related tasks. The PointNet takes n points as input and applies
a 3D transformation to the points. Then, a multilayer per-
ceptron is used to extract the per-joint features, and the max
pooling is used to aggregate the features. In our problem, we
directly use the three-layer perceptron to extract the human-
aware features. The sizes of the layers are set as 64, 128, 1024
separately. The reason for using PointNet is that the input
point clouds are already pose-aware, which means they only
contain local information. Moreover, the model size using
PointNet is much smaller than that using PointNet++, which
enables it to be used in more potential applications.

Long Short-Term Memory Module. After we obtain the
pose-aware features, we add a recurrent connection between
the features of the neighboring frames. Since we focus on
pose estimation, we use the sequential data before frame t
to ensure the consistency festimate : (φ0, ...φt) 7→ qt. As
illustrated in the left lower corner of Fig. 1, we first calculate
the initial 3D pose by backprojecting the estimated 2D joints
q2d = {mi, ni}, i = 1, .., J into 3D space using the intrinsic
matrix of the depth maps. Then, the point cloud features of
consecutive frames extracted by PointNet are concatenated
with the initial pose and fed into the LSTM module. For the
first LSTM stage, we use zero vectors as the initial states. The
stage size is set to 256 in our network. To predict the final 3D
pose, we adopt a fully connected layer to map the out states
of the LSTM module to the offset of each joint and add it to
the initial pose to get the final result.

3.3 Loss function
We use both fully labeled data (“valid data” in the ITOP
dataset) and weakly labeled data ( “invalid data” in the ITOP
dataset) for training our model. For the fully labeled data, i.e.



the data with 3D pose labels, we use 3D joint loss L3D to en-
force the poses generated by our network to be consistent with
the ground truth 3D poses. We also use 2D joint loss L2D to
enforce the projected 2D poses of the generated 3D poses to
be close to the ground truth 2D poses. For the weakly labeled
data, we use only 2D joint loss L2D to enforce the projected
2D poses of the generated 3D poses to be consistent with the
ground truth 2D poses. In addition to these pose constraints
of a single frame, we also use consistency loss Lcon to make
the generated motion sequence continuous and smooth. Since
3D human pose estimation is a downstream task of the point
sampling, we also use the point cloud sampling loss Lsample

defined in Eq. (7).
The total loss function of our network is given as follows:

L = Iλ3DL3D+λ2DL2D+λconLcon+λsampleLsample (8)

where I is an indicator function to activate the 3D joint loss
term L3D, and the constants λ3D, λ2D, λcon, and λsample are
loss weights.

3D Joint Loss. The 3D joint loss L3D is computed with the
Euclidean distance between the estimated joint positions and
the ground truth joint positions:

L3D = ‖q∗ − (qinit + ∆q)‖2 (9)

where q∗ is the ground truth 3D human pose, qinit is the pre-
dicted initial pose, and ∆q is the predicted offset between the
initial pose and the ground truth pose.

2D Joint Loss. The 2D joint loss L2D is computed with
the Euclidean distance between the 2D projection of the pre-
dicted joint positions and the ground truth 2D joint positions:

L2D = ‖q∗2D − q2D‖2 (10)
where q∗2D is the ground truth 2D joint locations, q2D =
K(qinit + ∆q) is the estimated 2D joint locations and K is
the intrinsic matrix of the depth camera.

Consistency Loss. The key idea of consistency loss is that
we assume that the velocity of the joint movement should re-
main constant in a short time period. Therefore, we compute
consistency loss Lcon with the difference of the first-order
derivative between consecutive frames as follows:

Lcon =

T∑
t=3

‖(qt − qt−1)− (qt−1 − qt−2)‖2 (11)

The constant velocity assumption in the consistent loss is only
valid for a short time period, so we use both 3D joint loss and
consistent loss to balance the estimation accuracy and motion
smoothness.

3.4 Implementation Details
During the training process, we use Adam optimizer with a
learning rate of 0.0005 which is set to decay 0.05% every
1000 iterations. The bounding box size L is [1.8, 2, 1.5]. In
our experiments, we set the weights λ3D, λ2D, λconsis and
λsam as 10, 0.1, 1e-3 and 1. In the point cloud sampling
module, we choose ε = 0.025, M = 4 in the sampling center
generation step and 8-nearest neighbors in the projection step.

Experiment Detail Result(mAP/MJE)
Baseline our full method 93.38/3.97
Sampling
Strategy-1

w/ sample + Stage 2 91.96/4.35
w/o sample + Stage 2 89.59/5.51

Sampling
Strategy-2

FPS-based sampling 90.58/4.98
original SampleNet 92.29/4.33

Supervision
w/o weak supervision 92.53/4.14
1/2 fully labeled data 92.48/4.21
1/3 fully labeled data 92.28/4.33

Table 1: Ablation study results. We show the mAP (%) with the 10
cm error threshold and the mean joint error (mJErr) (cm).

In density-based sampling module, the original point clouds
are fed into five 1D convolution layers, each of which is fol-
lowed by a ReLU activation layer. The output dimensions of
the five convolution layers are 64, 128, 256, 512, and 128, re-
spectively. Then we use a fully connected layer that has 512
neurons to generate the sampling centers and the weights of
original point clouds.

4 Experiments
In this section, we first provide the implementation details
and introduce the datasets and evaluation metrics we use.
Then we will provide systematic evaluation results of our
method with ablation study and comparisons with state-of-
the-art methods.

4.1 Datasets and Evaluation Metrics
In our experiment, we use the ITOP dataset [Haque et al.,
2016] and NTU-RGBD dataset [Shahroudy et al., 2016; Liu
et al., 2019a] to evaluate our method. The ITOP dataset is
built for the 3D human pose estimation problem from depth
maps, and the NTU-RGBD dataset is built mainly for action
recognition problems. To evaluate the performance of our
human pose estimation method, we follow the work [Zhang
et al., 2020] and use two types of evaluation metrics. The
first is the overall precision of the pose estimation methods,
and it includes the percentage of correct keypoints (PCK) and
mean average precision (mAP). The PCK value means the
percentage of detected keypoints in a given threshold, and
mAP is the mean PCK over all joints. The threshold we use
in this set of comparisons is 10 cm. The second type is the
mean joint error (MJE), which is the average error between
the estimated results and the ground truth.

4.2 Ablation Study and Self-Comparison
To investigate the effect of different components of our net-
work, we conduct an ablation study of our model. We use the
ITOP dataset for the following experiments. The results are
shown in Table 1.

Effect of the Weak Supervision. We evaluate the effect of
the weak supervision by comparing the mAP value of models
trained with fully labeled data and models trained with fully
labeled data plus weakly labeled data. As illustrated in Table
1, the mAP values are 92.53% and 93.38% on the ITOP test
dataset. To further demonstrate the importance of weak su-
pervision, we train the model with a fixed amount of weakly



mAP (ITOP) mAP (NTU)
Body part V2V WSM V3D Ours WSM Ours

Head 98.25 98.15 99.61 98.42 84.54 89.34
Neck 98.8 99.47 98.93 98.67 92.63 91.80
Spine - - - - 93.98 92.83

Mid-spine - - - - 96.59 95.33
Shoulders 98.25 94.69 98.31 95.39 81.66 92.00

Elbows 78.73 82.80 73.21 90.74 66.75 84.08
Wrists - - - - 64.13 72.73
Hands 67.21 69.10 59.20 82.15 64.40 68.83

Thumbs - - - - 64.75 65.46
Hands-tip - - - - 61.62 63.21

Torso 98.29 99.67 92.80 99.71 97.94 95.19
Hips 90.25 95.71 77.24 96.43 96.79 94.69
Knee 91.68 91.00 73.16 94.41 77.19 87.56

Ankles - - - - 63.06 83.44
Feet 85.87 89.96 53.41 92.84 58.98 76.21

Mean 87.69 89.59 77.17 93.38 74.57 81.64

Table 2: Comparison of joint mAP with other methods(V2V:[Moon
et al., 2018], WSM:[Zhang et al., 2020], V3D:[Pavllo et al., 2019]).

labeled data and different proportions of fully labeled data.
As illustrated in Table 1, a sharp decrease of the fully labeled
data proportion leads to only a slight decline.

(a) (b) (c)

Figure 3: Qualitative results of our point cloud sampling strategy.
From left to right, we show the point cloud sampled by the tradi-
tional FPS method, by SampleNet and by our density-guided and
attention-based differentiable sampling method.

Effect of Point Sampling Strategy. To investigate the ef-
fectiveness of the sampling strategy, we conduct a compari-
son by replacing the LSTM in our method with one-frame re-
gression. Specifically, we use Stage 1 of our method with the
density-guided point sampling strategy and Stage 2 of WSM
to train the model. We then compare it with the model trained
with Stage 1 without any point sampling strategy and Stage
2 of WSM. Table 1 shows the comparison results with and
without point sampling using one-frame pose regression (See
“Sampling Strategy-1”). We can observe that our sampling
strategy is effective.

As shown in “Sampling Strategy-2” of Table 1, we conduct
experiments based on different sampling strategies (Sam-
pleNet and FPS-based sampling [Zhang et al., 2020]). We
keep the remaining parts of the architecture fixed and only
replace the sampling strategy. The mAP value with our sam-
pling strategy in our full model (93.38) is 1.09 and 2.80 per-
centage points higher than that with the SampleNet (92.29)
and FPS-based strategies (90.58), respectively. Fig. 3 illus-

Figure 4: Comparison of our method with WSM. We show the es-
timation results in a consecutive sequence showing a people turning
around.(a) Depth images, (b) results of WSM, (c) our results, (d)
ground truth. The left and right arms of WSM are swapped starting
from the second row.

trates qualitative results of our point cloud sampling strategy.
We observe that the noisy points with our method are almost
removed. Intuitively, these results can be interpreted by the
fact that the point clouds of the human body can be prop-
erly selected based on whether they can form a cluster in 3D
space rather than distance-based sampling methods such as
FPS-based sampling and SampleNet.

4.3 Comparison with the State-of-the-Art Methods
We compare the performance of our methods on the ITOP
and NTU-RGBD datasets with other state-of-the-art meth-
ods, namely, V2V-PoseNet [Moon et al., 2018](V2V for
short), the weakly supervised adversarial learning methods
(WSM for short ) [Zhang et al., 2020] and the purely RGB-
based 3D pose estimation method VideoPose3D (V3D for
short) [Pavllo et al., 2019]. We conduct qualitative compari-
son and quantitative comparisons.

Table 2 shows quantitative comparison results. Among the
compared methods, V2V first converts depth maps to volume
pixels and then uses a neural network to regress 3D poses.
WSM and our method both use point clouds as input. V3D
is also a two-stage method (first, it calculates 2D joints; then,
it uses them to estimate 3D joints). For the ITOP dataset, the
mAP value for our method is 3.79 percentage points higher
than that of WSM [Zhang et al., 2020](see Table 2). The
mean joint errors of our method are 3.56 cm and 2.72 cm
lower than those of V2V-PoseNet and WSM, respectively.
These results show that our method performs better than ex-



Figure 5: Qualitative results of our methods. The results on the ITOP dataset are shown in the first two rows, and the results on the NTU-
RGBD dataset are shown in the last two rows.

isting depth-based methods. We also conduct comparisons on
the NTU-RGBD dataset, and we compare our method with
the state-of-the-art WSM [Zhang et al., 2020]. As shown on
the right side of Table 2, the mean average precision (mAP)
of our method is 7.07 percentage points higher than that of
WSM [Zhang et al., 2020].

In Fig. 4, we show the qualitative results of a consecutive
sequence showing a person turning around. We uniformly se-
lect some frames from the sequence and show the estimation
results of WSM, our method and the ground truth. From the
figure, we can determine that the poses generated by WSM
have the error of swapping the left and right arms starting
from the second row, but our method produces reasonable re-
sults due to the sequential information. Our methods outper-
form other state-of-the-art methods on the ITOP dataset.

In order to investigate whether depth is a key clue to
achieve better human pose estimation results than the method
of solely lifting 2D poses to 3D, we also compare our method
with the RGB-based pose estimation method. In the compar-
ison, we choose V3D for comparison because V3D is trained
with sequential data in a weakly supervised manner, which is
consistent with our approach. Since V3D is also a two-stage
method, we can easily feed the ground truth 2D human pose
to V3D and recover the 3D human pose. As shown in Table 2,
our method outperforms V3D by a large margin (16.21 per-
centage points higher than V3D). We can observe that depth
information is important in 3D human pose estimation.

Moreover, we conduct comparison experiments on the run-
ning time between our method and the other depth image
based methods (V2V and WSM) on the ITOP dataset. The
running time of our method, V2V and WSM is 50.0, 3.5 and
24.4 FPS on a single NVIDIA 2080Ti GPU. Our density-
based point cloud sampling strategy is effective to reduce the

input point clouds and improve efficiency.
We show several examples of our estimation results on the

ITOP dataset and the NTU-RGBD dataset in Fig. 5.

5 Conclusion

In this work, we propose an effective approach that adopts
sequential information and a novel point sampling method to
achieve high-fidelity 3D human pose estimation. Our method
also adopts the weakly supervised method on sequential data
so that we can use more easy-to-access training data. Fur-
thermore, our model is robust over different levels of training
data annotations. Experiments demonstrate that our method
can achieve state-of-the-art performance on two main bench-
mark datasets. Our method could inspire related studies such
as those on differentiable point cloud sampling.

Although inspiring results were obtained from this re-
search, this work can be further improved. First, we be-
lieve that the combination of depth information and color im-
ages can help us generate more reasonable results. More-
over, we only tested our pose estimation methods on dense
point clouds, i.e., the point clouds captured by a depth cam-
era. However, human pose estimation methods from sparse
point clouds captured by LiDAR are expected in the future.
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