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Abstract—In this paper, we present a practicable method to
estimate individual 3D human model in a low cost multi-view
realtime 3D human motion capture system. The key idea is: using
human geometric model database and human motion database to
establish geometric priors and pose prior model; when given the
geometric prior, pose prior and a standard template geometry
model, the individual human body model and its embedded
skeleton can be estimated from the 3D point cloud captured
from multiple depth cameras. Because of the introduction of
the global prior model of body pose and shapes into a unified
nonlinear optimization problem, the accuracy of geometric model
estimation is significantly improved. The experiments on the
synthesized data set with noise or without noise and the real data
set captured from multiple depth cameras show that estimation
result of our method is more reasonable and accurate than the
classical method, and our method is better noise-immunity. The
proposed new individual 3D geometric model estimation method
is suitable for online realtime human motion tracking system.

Keywords-Human Model Estimation, Data Driven, Human
Motion Capture

I. Introduction

Human motion capture and tracking is a hot issue in
computer vision and graphics. It mainly studies how to quickly
reconstruct accurate human geometry model and human mo-
tion sequence from the input depth data stream. The motion
capture technology has important application value in the
movie stunt, animation games, sports training and other fields,
for example, the captured human motion sequence can be used
to guide sports training, or improve the sense of reality of
game characters. However, up to now, the existing low-cost
commercial RGB-D human capture system such as Kinect,
suffered from ill-pose problem caused by limbs occlusions
or self-occlusions, and cannot robustly reconstruct reasonable
accurate 3D human motion sequence. In contrast with single-
view-based system such as [1], the multi-view based methods
such as [2], can achieve even more accuracy by minimizing
the influence of ill-pose problem caused by limbs occlusion
or self-occlusion. Realtime human motion capture systems are
also reported. However, these methods need a pre-established
human model, when human body size changed significantly
or a pose is not in the database,it will fail.

To address this issue,we present a practicable method to
estimate individual 3D human model in a low-cost multi-

view realtime 3D human motion capture system. The key idea
is: Based on human geometric model database and motion
database, establish geometric priors and pose prior model;
With geometric priors, pose prior and a standard template
geometry model, the individual human body model and its
embedded skeleton can be estimated from the captured 3D
point clouds from multiple depth cameras. The main contri-
butions in this work are as follows:
• We proposed a new individual 3D geometric model

estimation method suitable for online realtime human
motion tracking system.

• Successfully introduced the global prior model of human
body pose and shapes into the nonlinear optimization
problem of human geometry model estimation, and con-
sequently the accuracy of geometric model estimation is
significantly improved.

II. RelatedWork

Model-free methods such as [3]–[5], considering no prior
information of human body, identify human pose in a frame
through image or mesh feature point detection. The drawback
is that it neglects the previous frames influence on the pose
of the current frame, that is, ignoring the essence of human
motion as a continuous process of spatial and temporal vari-
ation. Model-based methods need an 3D model scanned in
advance, such as methods based on point cloud ICP [6]–[8], or
methods based on multi view depth camera [9], [10]. The cost
of the 3D scanner is high, and it is time-consuming to process
the scanned data. It also suffers from error accumulation and
tracking the long time movement.

Data driven methods, with the help of a 3D pose database
constructed in advance from captured motion data, can usually
achieve compelling results. Siddiqu et al. [11] and Baak et al.
[12] estimate human pose in each frame by detecting feature
points from depth image. Since the model in the database
is the standard 3D human body model, it cannot always get
reasonable results when the size of actors is much different
from the standard model in database. Ye et al. [13] retrieve the
optimal match between the 3D point cloud captured from multi
depth camera and the 3D human pose in the database, and
then estimate the full-body pose by deforming the retrieved
pose back to the captured 3D point cloud through non-rigid
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registration. The human pose database is composed of the
3D point clouds which are calculated from the depth images
which are generated by projecting a standard 3D body model
driven by an embedded skeleton. Zhang et al. [2] present an
efficient physics-based motion reconstruction algorithm that,
integrating the input depth data from 3 Kinect cameras, foot
pressure data from wearable pressure sensors and detailed
full-body geometry, can reconstruct offline full-body motion
(i.e. kinematic data) and human dynamic data. When tracking
the 3D skeletal poses, the global PCA for features dimension
reduction process is done on the 3D body posture set in the
CMU motion database, the reconstructed 3D pose prior is
equivalent to imposing additional range constraint on human
joint angle. Zhu et al. [14] succeeded in tracking human
motion by combining the semantic feature detection of human
limbs based on Bayesian estimation and inverse kinematical
optimization calculation with constraints such as joint limit
avoidance. However with the assumption that human head in
the image is always located above its waist, therefore, it can
not deal with the pose that does not meet this condition. Wei et
al. [1] provide a fast, automatic method for capturing full-body
motion data using a single depth camera. It described the real-
time 3D human posture reconstruction from monocular depth
image as formulating the registration problem in a Maximum
A Posteriori (MAP) framework and iteratively registering a 3D
articulated human body model with monocular depth image.

In general, from the above human motion capture system,
we can see that the model-based method often is more better in
accuracy and the human geometry model estimation plays an
important role in these methods. Therefore, our motivation of
this paper is how to reasonablely and accurately estimate the
individual geometry model suitable for realtime human motion
system. The most related work to ours in this paper is that
proposed by Anguelov et al. [15] which introduce the SCAPE
method, a data-driven method, for building a human shape
model that spans variation in both subject shape and pose.
Generally, the SCAPE method can reconstruct a reasonable
and accurate 3D human geometric model and pose. However,
the SCAPE method requires accurate point correspondence
between non-rigid model and the target 3D point cloud to
ensure the 3D human pose accuracy estimation and large-
scale deformation, and when the target 3D human pose differs
largely from the template model, the result of SCAPE is
obviously unreasonable.

III. Overview

We propose an effective approach to online estimate indi-
vidual human geometric model for a low-cost realtime 3D
human motion capture system. Fig.1 gives the pipeline of our
system. The input data is the 3D point cloud captured by
multi-view caliberated depth camera and a standard template
human geometric model. Then the individual 3D geometric
models and embedded skeletons consistent with input point
clouds are accurately constructed by making full use of
human geometric model database and human pose database.
We will demostrate that our method can quickly reconstruct

reasonable and accurate individual 3D geometric models and
its embedded skeletons, and it is suitable for realtime human
motion capture system.

Fig. 1. System overview

IV. Data Acquisition
This section focuses on the data acquisition method from

multiple depth cameras and the representation form of pose
database.

A. Spatial and Temporal Alignment

There are four deep cameras (Microsoft Kinect v2.0) con-
nected to one PC, which extended three PCI card to obtain
three additional USB3.0 ports (only one USB3.0 hub on my
mainboard). Since Microsoft’s Kinect driver does not support
multiple Kinect cameras connecting simultaneously, we use
the open source device driver libfreenect2 [16] .

Temporal alignment: The frame rate of Kinect is 30fps,
that is, the acquisition cycle is about 33ms. Attaching a times-
tamp for every depth frame when capturing, the synchronous
group comprises of depth frames with time difference of less
than half a period (≤ 15ms).

Camera parameters: There are four Kinect cameras lo-
cated at the four corners of an approximate square capture
scene, and all are positioned toward the center of the scene.
The camera’s intrinsic parameters can be read from device
using libfreenect2 API. The extrinsic parameters can be easily
calibrated with the help of a chessboard. We choose one
camera’s coordinate system as the reference coordinate system,
and spatially align all the depth frames into the reference
coordinate.

B. Pose Database

3D human pose representation. Just like [17], the 3D
human body pose is defined as a DoF (Degree of Freedom)
vector q ∈ R36, including root (6 DoF), upperback (3 DoF),
r/lclavicle (2 DoF), r/lhumerus (3 DoF), r/ lradius (1 DoF),
neck (2 DoF) head (1, DoF), r/lfemur (3 DoF), r/ltibia (1 DoF)
and r/lfoot (2 DoF).

3D human pose database. Same as [17], we select motion
sequence database close to 2.5 hours in total time from
the CMU human motion sequence database [18], and its
movement types include: walking, running, boxing, kicking,
jumping, dancing and waving, fitness and golf etc..

V. GeometryModel Database
3D human geometry model database. we use the

CAESER human geometry model database [19] with details
infomation, which contains 1517 male geometric models of A-
pose and 1531 female geometric models of A-pose. The topol-
ogy of all the mesh model in the database is consistent with
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each other. The human geometry model is represented by a
long vector si composited of the vertex set of the mesh model,
and the database is represented by S = {si, i = 1, · · · ,N}.

3D human geometry model prior. With the human ge-
ometry model database S the global linear prior model of the
human geometry model is established by principal component
analysis (PCA) [20], and it is formulated as:

s(βββ) = Pβββ,k · βββ + s (1)

where βββ is the low dimensional parameter vector of human
geometry model, Pβββ,k is the matrix composed of vectors from
the former k dimension of the principal component vectors,
and s is the average vector of human geometric models in the
database. In our experiments, the principal component ratio is
set to 95%, and the mean model is used as the template model.
Moreover, the priors of the male and female human geometry
models are constructed separately.

VI. Skeleton Estimation

Employing skeleton driven method to deform the human
geometric model in pose dimension, we propose a novel
method to automatically and accurately estimate the embedded
skeleton when given a new human geometry model consistent
with the geometric topology of the template model, a known
geometric template model and its embedded skeleton.

Parameterization of embedded skeleton joint. Given the
human geometric template model and its embedded skeleton,
the coordinates Ji of the joint centers of the human skeleton
can be expressed as weighted linear combinations of coordi-
nates of their “nearest neighbors” vertices. It can be formalized
as equation (2). Therefore, we can obtain the vertex weights
when given the template geometric model and its embedded
skeleton.

Ji =
∑

vi, j∈Vi

wi, j · vi, j (2)

where Vi is a set of “nearest neighbors” vertices of i − th
joint of the embedded skeleton, vi, j is the coordinate of j− th
vertex in Vi, wi, j is a weight corresponding to the vertex vi, j

. Ji is the coordinate of the embedded skeleton joint i.
Solution of vertex weight w. Given the human template

geometric model and its embedded skeleton, the geometric
model vertices can be estimated and formalized as a con-
strained linear least squares problem:

arg min
w j
‖
∑

ṽi, j∈Ṽi

wi, j · ṽi, j − J̃i‖2

subject to wi, j ≥ 0
(3)

where J̃i is the coordinate of the embedded skeleton joint
i of the template model, Ṽi is a set of “nearest neighbors”
vertexs of ith joint of the embedded skeleton, ṽi, j is the
coordinate of jth vertex in Ṽi, wi, j is a weight corresponding
to the vertex ṽi, j. Those Ṽi, ṽi, j, and J̃i are known variables,
and wi, j is the pending variable.

Estimation of embedded skeleton. The estimated indi-
vidual geometry model has the same mesh topology as the
template model, and all of them are A-pose. Therefore, ac-
cording to the equation (2), when given the vertex coordinates
of individual geometry model and vertex weights wi, j, we can
find joint coordinates Ji of embedded skeleton for the new
human geometry model.

VII. GeometricModel Estimation

In this section, we will describe how to formulate the auto-
matic estimation problem of the detailed individual geometric
model as a nonlinear optimization problem and its iterative
optimization method. Specifically, when given the 3D point
cloud P captured from current frame, human geometric model
database S, pose database Q, the individual human geometric
model can be obtained (parameterized as human pose parame-
ter vector q̃ and human geometric model parameter vector β̃ββ).
it can be formalized as:

q̃, β̃ββ = arg min
q,βββ
λ1Epoint + λ2Eplane + λ3Eβ−prior

+λ4Ebone−balance + λ5Eq−prior

(4)

where λ1, λ2, λ3, λ4, λ5 are the weights of each energy item
respectively. By introducting of Eq−prior and Eβ−prior into
the optimization objective function as the global prior of
human body pose and shapes, the rationality and accuracy of
individual 3D model can be significantly improved.

Usually the pose of a real actor differs from the standard
A-pose in the model database, and it may be very small
or large. In order to accurately estimate detailed individual
mesh model, the template model should deform in the shape
dimension,as well as in its pose dimension. In the iteration
process, assuming that the topology of the embedded human
skeleton remains the same, and the length of the skeleton will
change naturally with the changes of the human geometry
model.

Corresponding points term. It is to minimize the distance
between the vertex set of the reconstructed human geometry
model and the captured 3D point cloud. In order to improve
the accuracy and rationality of nearest point matching, both the
point-to-point and point-to-plane metric [21], [22] are used.

Epoint =
∑

i

‖vi(q, βββ) − p∗i ‖pF (5)

Eplane =
∑

i

‖nT
i (q, βββ) · (vi(q, βββ) − p∗i )‖pF (6)

where ‖•‖pF is the p−norm. The point-to-point distance refers
to the closest Euclidean distance between the human geometry
model vertex vi(q, βββ) and the captured 3D point p∗i . The point-
to-plane distance refers to the distance from captured 3D point
cloud to intersection point of the tangent plane of captured 3D
point cloud p∗i and the normals nT

i (q, βββ) for vertex vi(q, βββ) of
human geometry model. Usually, increasing ratio of Eplane to
Epoint can guarantee good convergence of algorithm [22], and
it is set to 1:3 in the experiment.
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Symmetric skeleton length term. It encourages the sym-
metrical skeletal segments to be as the same in length as
possible. In our experiments, we suppose only the four limbs
are symmetry.

Ebone−balance =
∑

{(m,n)}∈{(M,N)}
‖lm − ln‖2 (7)

where {(M,N)} is symmetrical skeletal segments, lm, ln is
respectively the left and right symmetry bone length.

Human geometry model prior term. It is a penalty to
satisfaction degree of the probability distribution of the recon-
structed individual geometry model and the probability distri-
bution of the global space composed of the human geometry
model in database. Assuming that the human geometry model
database in the global space is subject to multivariate normal
distribution, the the human geometric model prior is defined to
maximize the following conditional probability (equation (8)).
In general, the probabilistic maximization problem can be
converted into the energy minimization problem (equation (9)):

Pr(s(βββ)|s1, · · · , sN) =
exp(− 1

2 (s(βββ) − s)TΛΛΛ−1
βββ (s(βββ) − s))

(2π)
d
2 |ΛΛΛβββ| 12

(8)

Eβ−prior = (s(βββ) − s)TΛΛΛ−1
βββ (s(βββ) − s) = βββT PT

βββ,kΛΛΛ
−1
βββ Pβββ,kβββ (9)

where ΛΛΛβββ is the matrix composed of the former k principal
component vector from the covariance matrix human geometry
model database, βββ is a pending low dimensional parameter
vector of human body model, the Pβββ,k and s have obtained
respectively in section V, the matrix composed of the former
k principal component vector from the human geometric model
prior and the average vector.

Human pose prior term. The penalty is the satisfaction
degree of the probability distribution of the reconstructed
individual human pose and that of the global space composed
of the human pose database. Given human pose databases
Q = {qi, i = 1, · · · ,H}, this section also employs the principal
component analysis (PCA) [20] to establish a global linear
prior model of human pose. It can be formalized as:

q = Pq,b · w + q (10)

Where w is the low dimensional parameter vector of human
body pose, Pq,b is the matrix composed of the former b
principal component vector, and q is the mean vector of human
pose in the database. The principal component ratio is set to
95%. Similarly, assuming that the human pose database in
the global space is subject to multivariate normal distribution,
then the human pose prior can be defined to maximize the
following conditional probability equation (11); It can also be
converted into equation (12):

Pr(q|q1, · · · , qH) ∝

exp(−
‖PT

q,b · (Pq,b · (q − q)) + q − q‖2
2δ2q−prior

)
(11)

Eq−prior = ‖PT
q,b · (Pq,b · (q − q)) + q − q‖2 (12)

where q is a pending human pose vector, The δq−prior is a soft
constraint form of body pose prior.

Optimization method. By substituting equation (5), (6),
(7), (9) and (12) into the equation (4), the final equation can
be obtained. In our experiment, let p = L2

L1
. The variables

λ1, λ2, λ3, λ4, λ5 are the weights of each energy item, and set
to 1, 3, 1E3, 0.03 and 10, respectively in our experiments. The
nonlinear optimization problem, equation (4), about the human
pose parameter vector q̃ and human geometric model parame-
ter vector β̃ββ, is solved by make using of joint optimization strat-
egy based on the Particle Swarm Optimization (PSO) [23]–
[25]. When the optimization is done, the number of iterations
is 10 times, and 2000 particles are generated randomly at each
iteration step. Since the independence between the particles,
GPU is used to accelerate the computation. In the experiment,
the efficiency of the algorithm was tested 200 times. Averagely
in 6-7 iterations, it will converge to the approximate optimal
solution.

VIII. Results

In the following experiments, several virtual human models
with large differences in stature and real actors were randomly
selected in a variety of different pose (A-pose and other pose),
and by comparing with the SCAPE [15] method which is
a state-of-the-art data-driven method and is the most related
work to ours in this paper, we will demonstrate the accuracy
and rationality of our individual geometry model estimation
method. The experimental environment is a PC machine with:
a CPU of Intel Core i7-6850K 3.6GHz with 6 processor
12 thread, main memory size of 128GB, a CUDA enabled
graphics card of NVIDIA GeForce GTX 1080 of 8GB memory
based on Pascal architecture 1.733GHz.

Evaluation of pose and shape prior term The results from
the experiment with or without Eq−prior and Eβ−prior are shown
in Fig.2 and Fig.3(a) respectively, and it proved that these two
energe term can be significantly improved the rationality and
accuracy of the reconstructed model.

Fig. 2. Evaluation of pose prior. Top row is the result of without Eq−prior ,
and the bottom row with Eq−prior .

Synthesized clean 3D point cloud In the experiment, the
average model in CAESER database is used as the human
template model. The SCAPE model is trained on the template
model, which consists of 70 human template models in dif-
ferent pose (based on the multi-view pose human database
supplied by SCAPE, obtained by the method [26]). The
purpose of this experiment is to compare the modeling ability
of our method with SCAPE [15].The input data are the 3D
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(a) For shape prior. (b) Error Comparison

Fig. 3. Reconstruction Error

point cloud, which is synthesized from 45 male human body
models of three different poses (one similar to the template A-
pose, another two different obviously) randomly selected from
the CAESER database.

Experiment on 45 test data of 3 kinds of poses, the average
reconstruction error of human geometrical models was shown
in Table I. Pose1 is of the pose in first row in Fig.4, Pose2
and Pose3 are second and third row respectively. The partial
comparison results are shown in figure 5. It shows that our
method is more accurate and robust than the classical SCAPE
method. Show in Fig.4;

TABLE I
Reconstruction error in clean data

SCAPE’s Ours
Pose1 1.79 ± 0.88cm 1.74 ± 0.85cm
Pose2 2.87 ± 1.52cm 2.13 ± 1.08cm
Pose3 4.4 ± 5.6cm 2.1 ± 1.02cm

Fig. 4. Comparison test on synthetic clean data. Col. a1 and a2 are the input,
b1 and b2 are the results of SCAPE [15], c1,c2 are its reconstruction errors,
d1and d2 are the results of ours, e1 and e2 are our errors.

Synthesized noisy 3D point cloud This experiment is the
same as previous one except that the input data are the 3D
point cloud added with random Gaussian noise. From Table II
and Fig.5, it also shows that our method is more accurate and
robust than the classical SCAPE method.

TABLE II
Reconstruction error of noisy data

SCAPE’s Ours
Pose1 2.69 ± 1.21cm 1.76 ± 0.87cm
Pose2 9.04 ± 6.79cm 2.19 ± 1.1cm

Comparing the reconstruction results from noisy and clean
synthetic data set, as shown in Fig.3(b), it is obvious that our
method reconstruction accuracy achieves the same well, while
the reconstruction error of SCAPE is much different suffering
noisy data. Therefore, our method performs better than SCAPE
in the anti-noise ability.

Fig. 5. Comparison test on synthetic noisy data. Col. a1 and a2 are the input,
b1 and b2 are the results of SCAPE [15], c1,c2 are its reconstruction errors,
d1and d2 are the results of ours, e1 and e2 are our errors.

Online test on real actors. In the previous experiment
using synthetic 3D point cloud, the virtual human model is a
scanning model with only underwear, but in actual scenarios,
the actors are normally dressed. The online test on normally
dressed actors, comparing the modeling ability of our method
with SCAPE, also shows that our method is more accurate and
robust than the classical SCAPE method.Shown as in Fig.5.

Fig. 6. Online test results. column a is the captured point cloud, b,c is the
result of ours, d,e is SCAPE’s

According to the above experimental results, both our
method and SCAPE [15] can reconstruct a reasonable and
accurate 3D geometric model and pose. However, when the
human pose differs largely from the template model, our
method can reasonably and accurately reconstruct the 3D
body shape and pose, while the result of SCAPE is obviously
unreasonable (shown as red circles highlight part in Fig.5
and Fig.6 ). The main reason is: firstly, the SCAPE requires
accurate point correspondence between non-rigid model and
the target to ensure the 3D human pose accuracy estimation
and large-scale deformation. These accurate correspondences
are usually required specified [15] by hand or like [27] given
actor’s height and weight information, to estimate an initial
pose very similar to (or consistent) the pose of target point
cloud. Secondly, in our method, the deformation of limb
segments of 3D human pose is rigid deformation, and it can
guarantee reasonable large scale deformation. However, in
the SCAPE method, it is non-rigid deformation and can not
guarantee the large scale pose deformation. In addition, the
method of iterative optimization algorithm is the variable to
solve in our iterative optimization algorithm composed of a
shape and pose parameters of low dimensional vector (in the
experiment is 51 dimensional), while in the SCAPE method
is a transformation matrix of each patch (close to 100,000
dimension in the experiment), it is obvious that our efficiency
is better than the SCAPE method. Therefore, our method is
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more suitable for online application than the SCAPE method.
Application In this experiment, actors with different size

were asked to complete a variety of motions (including:
walking, walking and kicking, boxing, and etc.), Some test
results are shown in Fig.7(a) and Fig.7(b), respectively. The
experimental results show that our motion tracking method can
be applied to different people of different size,suitable for a
variety of daily action, and get accurate and reasonable motion
estimation results. It verifies the effectiveness of the proposed
method. In addition, the average frame rate of the above
captured 3D human motion sequences is 20.25fps, which
verifies the realtime performance of the proposed method.

(a) Alternate rolling hands. (b) Heterogeneous Motion

Fig. 7. Application Results

IX. Conclusion

This paper focuses on how to estimate the individual ge-
ometric model of human body quickly and reasonably based
on the global human pose and shape prior model, from the
3D point cloud captured from multiple depth cameras. Our
method successfully integrates the prior information of human
geometric model and human pose into a unified optimization
problem, making the estimated human model more accurate
and reasonable. Due to the use of multi-view depth cam-
era data, the ill-pose problem caused by occlusion or self-
occlusion can be solved to some extent. The experiments
show that based on our individual geometric model estimation
method, it is easy to develop a low-cost, online realtime and
accurate acquisition system for 3D human motion sequences.

However, the influence of muscle and skin on the deforma-
tion of human model geometry has not been considered in our
method, and it will result in the lacking of local details of the
reconstructed model. We will try to address this problem in
the future research work.
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