14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

Combining Recurrent Neural Networks
and Adversarial Training for Human
Motion Synthesis and Control

Zhiyong Wang", Jinxiang Chai, and Shihong Xia

Abstract—This paper introduces a new generative deep learning network for human motion synthesis and control. Our key idea is

to combine recurrent neural networks (RNNs) and adversarial training for human motion modeling. We first describe an efficient
method for training an RNN model from prerecorded motion data. We implement RNNs with long short-term memory (LSTM) cells
because they are capable of addressing the nonlinear dynamics and long term temporal dependencies present in human motions.
Next, we train a refiner network using an adversarial loss, similar to generative adversarial networks (GANs), such that refined motion
sequences are indistinguishable from real mocap data using a discriminative network. The resulting model is appealing for motion
synthesis and control because it is compact, contact-aware, and can generate an infinite number of naturally looking motions with
infinite lengths. Our experiments show that motions generated by our deep learning model are always highly realistic and comparable
to high-quality motion capture data. We demonstrate the power and effectiveness of our models by exploring a variety of applications,
ranging from random motion synthesis, online/offline motion control, and motion filtering. We show the superiority of our generative

model by comparison against baseline models.

Index Terms—Deep learning, adversarial training, human motion modeling, synthesis and control

1 INTRODUCTION

HIS paper focuses on constructing a generative model for

human motion generation and control. Thus far, one of
the most successful solutions to this problem is to build gen-
erative models from prerecorded motion data. Generative
models are appealing for motion generation because they are
often compact, have a strong generalization ability to create
motions that are not in prerecorded motion data, and can
generate an infinite number of motion variations with a small
number of hidden variables. Despite the progress made over
the last decade, creating appropriate generative models for
human motion generation remains challenging because it
requires handling the nonlinear dynamics and long-term
temporal dependencies of human motions.

In this paper, we introduce an efficient generative model
for human motion modeling, generation and control. Our
key idea is to combine the power of RNNs and adversarial
training for human motion generation, in which synthetic
motions are generated from the generator using RNNs and
the generated motion is refined using an adversarial neural
network, which we call the “refiner network”. Fig. 2 gives

o Z. Wang and S. Xia are with the Beijing Key Laboratory of Mobile
Computing and Pervasive Device, Institute of Computing Technology,
Chinese Academy Of Sciences, Beijing 100190, China, and also with the
University of Chinese Academy of Sciences, Beijing 100049, China.
E-mail: {wangzhiyong, xsh)@ict.ac.cn.

o . Chai is with the Texas A&M University, Uvalde, TX 78801 USA.
E-mail: jxchai@gmail .com.

Manuscript received 7 Sept. 2018, revised 20 June 2019; accepted 11 Aug.
2019. Date of publication 5 Sept. 2019; date of current version 24 Nov. 2020.
(Corresponding authors: Jinxiang Chai and Shihong Xia.)

Recommended for acceptance by |. Lee.

Digital Object Identifier no. 10.1109/TVCG.2019.2938520

an overview of our method: a motion sequence Xpyy is
generated with the generator G and is refined using the
refiner network R. To add realism, we train our refiner net-
work using an adversarial loss, similar to GANs [1], such
that the refined motion sequences X, i,. are indistinguish-
able from real motion capture sequences X,., using a dis-
criminative network D. In addition, we embed contact
information into the generative model to further improve
the quality of the generated motions.

We construct the generator G based on RNNs. RNNs are
connectionist models that capture the dynamics of sequen-
ces via cycles in the network of nodes. Recurrent neural net-
works, however, have traditionally been difficult to train
because they often contain millions of parameters and have
vanishing gradient problems when they are applied to han-
dle long term temporal dependencies. We address the chal-
lenge by using a LSTM architecture [2], which has recently
demonstrated impressive performance on tasks as varied as
speech recognition [3], [4], language translation [5], [6], [7],
and image generation [8].

Our refiner network, similar to GANSs [1], is built upon
the concept of game theory, where two models are used to
solve a minimax game: a generator that samples synthetic
data from the model and a discriminator that classifies the
data as real or synthetic. Thus far, GANs have achieved
state-of-the-art results on a variety of generative tasks, such
as style transfer [9], 3D object generation [10], image super-
resolution [11], image translation [12] and image genera-
tion [13], [14], [15].

Our final generative model is appealing for human motion
generation. In our experiments, we show that motions

1077-2626 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7614-288X
https://orcid.org/0000-0001-7614-288X
https://orcid.org/0000-0001-7614-288X
https://orcid.org/0000-0001-7614-288X
https://orcid.org/0000-0001-7614-288X
https://orcid.org/0000-0002-7228-9646
https://orcid.org/0000-0002-7228-9646
https://orcid.org/0000-0002-7228-9646
https://orcid.org/0000-0002-7228-9646
https://orcid.org/0000-0002-7228-9646
mailto:
mailto:

WANG ET AL.: COMBINING RECURRENT NEURAL NETWORKS AND ADVERSARIAL TRAINING FOR HUMAN MOTION SYNTHESIS AND... 15

| &
20 J ﬁ\ ‘.“.\

1 \ y S <

i VV!Z*‘ 1'\\

BN
< ¥
< &

Fig. 1. Human motion generation and control with our model. (left) random generation of high-quality human motions; (right) realtime synthesis and

control of human motions.

generated by our model are always highly realistic. Our
model is also compact because we do not need to preserve the
original training data once the model is trained. In addition,
when we acquire new training data, we do not always need to
train the model from scratch. If the total amount of data does
not exceed the capacity of the network, we can utilize the pre-
vious networks as a pretrained model and fine-tune the model
with the new training data instead.

We have demonstrated the power and effectiveness of
our model by exploring a variety of applications, including
motion generation, motion control and motion filtering.
With our model, we can sample an infinite number of natu-
ral-looking motions with infinite lengths, create a desired
animation with various forms of control input, such as the
direction and speed of a “running motion”, and transform
unlabeled noisy input motion into high-quality output
motion. We show the superiority of our model through
comparison against a baseline generative RNN model. We
show that our method achieves a more accurate motion syn-
thesis result than an alternative method with given root tra-
jectory constraints.

1.1 Contributions
Our work is made possible by a number of technical
contributions:

RNN generator Synthesized
G motion: Xuw

e We present a new contact-aware deep learning
model for data-driven human motion modeling,
which combines the power of recurrent neural net-
works and adversarial training.

e We train an adversarial refiner network to add real-
ism to the motions generated by RNNs with LSTM
cells, using a combination of an adversarial loss and
a self-regularization loss.

e We introduce methods for applying the trained deep
learning model to motion synthesis, control and
filtering.

2 BACKGROUND

Our approach constructs a generative deep learning model
from a large set of prerecorded motion data and uses it to
create realistic animation that satisfies various forms of
input constraints. Therefore, we will focus our discussion
on generative motion models and their application in
human motion generation and control.

Our work builds upon a significant body of previous
work on constructing generative statistical models for
human motion analysis and synthesis. Generative statistical
motion models are often represented as a set of mathemati-
cal functions that describe human movement using a
small number of hidden parameters and their associated

Refined
MOotioNn: Xeefinea

Discriminator

Real vs Refined

Real motion:
Xreal

Fig. 2. The Pipeline of our system. We first generate a motion sequence from the RNN generator, G, and then refine the output of the generator with a
refiner neural network, R, that minimizes the combination of an adversarial loss and a “self-regularization” term. The adversarial loss “fools” a dis-
criminator network, D, which classifies the motion as real or refined. The self-regularization term minimizes the difference between the synthetic

motion and the refined motion.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limite:

16 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

probability distributions. Previous generative statistical
models include Hidden Markov Models (HMMs) [16], var-
iants of statistical dynamic models for modeling spatial-
temporal variations within a temporal window [17], [18],
[19], [20], [21], and concatenating statistical motion models
into finite graphs of deformable motion models [22].

Most recent work on generative modeling has been
focused on employing deep RNNs to model the dynamic
temporal behavior of human motions for motion predic-
tion [23], [24], [25], [26], [27], [28]. For example, Fragkiadaki
and colleagues [23] proposed two architectures: LSTM-3LR
(3 layers of LSTM cells) and ERD (Encoder-Recurrent-
Decoder) to concatenate LSTM units to model the dynamics
of human motions. Jain and colleagues [24] introduced struc-
tural RNNs (SRNNs) for human motion prediction and gen-
eration by combining high-level spatio-temporal graphs
with the sequence modeling success of RNNs. RNNs are
appealing for human motion modeling because they can
handle nonlinear dynamics and long-term temporal depen-
dencies in human motions. However, as observed by other
researchers [25], [26], current deep RNN based methods
often have difficulty obtaining good performance in long
term motion generation. They tend to fail when generating
long sequences of motion, as the errors in their prediction are
fed back into the input and accumulate. As a result, their
long-term results suffer from occasional unrealistic artifacts,
such as foot sliding, and gradually converge to a static pose.
Zhou et al. [28] successfully trained an auto-conditioned
RNN model that is able to produce a long motion sequence.
However, as their model does not provide an estimation of
the distribution of the next frame, their model cannot be
directly applied to motion control applications.

To address the challenge, we estimate both the means
and standard deviations of the motion parameters. We
refine the motions generated by RNN using a “refiner
network” with an adversarial loss such that the refined
motion sequences are indistinguishable from real motion
capture data using a discriminative network. Adversarial
training allows us to construct a generative motion model
that can randomly generate an infinite number of high-
quality motions with infinite length, a capability that has
not been demonstrated in previous work. Our user studies
show that the motions generated by our model have compa-
rable quality to high-quality motion capture data and are
more realistic than those generated by RNNs. Our goal is
also different from theirs because we aim to learn generative
models for human motion synthesis and control rather than
motion prediction for video-based human motion tracking.
In our experiments, we show that the user can create a
desired animation with various forms of control input, such
as the direction and speed of a running motion.

Our work is relevant to recent efforts on character anima-
tion and control using deep learning methods [29], [30]. For
instance, Holden et al. [29] trained a convolutional autoen-
coder on a large motion database and then learned a regres-
sion between high level parameters and the character
motion using a feedforward convolutional neural network.
In their more recent work, Holden et al. [30] constructed a
simple three layer neural network to map the previous char-
acter pose and the current user control to the current pose,
as well as the change in the phase, and applied the learned

regression function for realtime motion control. Our model
is significantly different from theirs because we combine
RNNSs and adversarial training to learn a dynamic temporal
function that predicts the probability distributions of the
current pose given the character poses and hidden variables
in the past. Given the initial state of human characters, as
well as the learned generative model, we can randomly gen-
erate an infinite number of high-quality motion sequences
without any user input. Another difference is that we for-
mulate the motion synthesis and control problem in a Maxi-
mum A Posteriori (MAP) framework rather than regression
framework adopted in their work. The goal of our motion
synthesis is also different because we aim to generate high-
quality human motion from various forms of animation
inputs, including constraints from offline motion design,
online motion control and motion denoising while their
methods are focused on for realtime motion control based
on predefined control inputs.

Lee et al. [31] presented an approach using LSTM which
can handle foot-ground contacts and non-cyclic motions.
They introduced a loss term to penalize foot sliding in train-
ing, and a data augmentation method based on motion
graphs. Our model is different from theirs in two aspects.
The first and most important difference is that their model
takes control signal and motion from previous frame as
input, while ours only relies on motion from previous
frame. This difference in input probably makes the model
difficult to model non-cyclic motions, which had also been
found by [23], [32]. The second difference is that the output
of their model is the character’s motion, while our generator
gives the distribution of the character’s motion. As the out-
put of our generator is a distribution but not certain motion,
we cannot apply the strategy of Lee et al. [31]. Instead, we
make use of adversarial training to refine the synthesized
motions.

Our idea of using adversarial training to improve the
quality of synthesized motion from RNNs is motivated by
the success of using an adversarial network to improve the
realism of synthetic images using unlabeled real image
data [14]. Specifically, Shrivastava and colleagues [14] pro-
posed Simulated+Unsupervised (S+U) learning, where the
task is to learn a model to improve the realism of a simu-
lator’s output using unlabeled real data, while preserving
the annotation information from the simulator. They devel-
oped a method for S+U learning that uses an adversarial
network similar to GANs, but with synthetic images as
inputs instead of random vectors. We significantly extend
their idea for S+U learning for image synthesis to human
motion synthesis by improving the realism of human
motion generated by RNNs with adversarial network using
prerecorded human motion capture data.

3 OVERVIEW

Our goal herein is to learn generative networks from prere-
corded human motion data and utilize them to generate nat-
ural-looking human motions consistent with various forms
of input constraints. The entire system consists of two main
components:

Motion Analysis. We describe a method for learning the
deep learning model from preprocessed motion data. To be

to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: COMBINING RECURRENT NEURAL NETWORKS AND ADVERSARIAL TRAINING FOR HUMAN MOTION SYNTHESIS AND... 17

specific, our first step is to learn a generative model based
on RNNs with LSTM cells. Next, we train a refiner network
using an adversarial loss such that the refined motion
sequences are indistinguishable from real motion capture
data using a discriminative network. We embed contact
information into the GANSs to further improve the perfor-
mance of the refiner model.

Motion Synthesis. We show how to apply the learned
GANSs to motion generation and control. We formulate the
problem in an MAP framework. Given the initial state of
human characters, as well as the learned generative model,
we find the most likely human motion sequences that are
consistent with control commands specified by the user and
environmental constraints. We combine sampling-based
methods with gradient-based optimization to find an opti-
mal solution to the MAP problem. We discuss how to utilize
the contact information embedded in the generative model
to further improve the quality of output animation. We
adopt a similar MAP framework to transform unlabeled
noisy input motion into high-quality animation.

We describe the details of each component in the next
sections.

4 MOTION ANALYSIS

Our goal is to develop a generative model that formulates
the probabilistic distribution of the character state at the
next frame x;;; given the character state and hidden varia-
bles at the current frame, denoted x; and h;, respectively.
Mathematically, we want to model the following probabilis-
tic distribution:

P(Xer1(xe, hy). (1

In the following, we explain how to model the probabilistic
distribution using RNNSs in Section 4.1 and how to train a
refiner network using an adversarial loss such that the
refined motion sequences are indistinguishable from real
motion capture data in Section 4.2. Section 4.3 discusses how
to utilize the contact information embedded in the generative
model to further improve the quality of output animation.

4.1 Generative RNN Model

In this section, we first explain our motion feature represen-
tation x;. Then, we give a brief introduction to RNNs and
LSTM cells and explain how to apply LSTM to generative
motion modeling. In addition, we provide implementation
details on how to stabilize training of the RNN model.

4.1.1 State Feature Representation

Each motion sequence contains the trajectory for the absolute
position and orientation of the root node (pelvis) as well as
the relative joint angles of 18 joints. These joints are head,
thorax, and left and right clavicle, humerus, radius, hand,
femur, tibia, foot and toe. Let q; represent the joint angle
pose of a human character at frame ¢, it can be written as:

q:[tr ty t, T Ty Tz 02 ed}T: (2)

where (t,,t,,t.) is the 3D position of the root joint, ,,r,,
and r, are the joint angles of the root joint, and 05, ..., 0, are
the joint angles of other joints.

To define the features of the character state, we choose to
use the relative rotation between the current frame and the
previous frame for root rotation around the y-axis. We
denote it Ar,, which represents the relative global rotation
of the character. Our translation features on the x- and
z-axes are defined in the local coordinates of the previous
frame. The values of global rotation and translation features
do not change when arbitrary rotations are applied to the
character or the root position of the character changes,
which means that our feature representation is rotation
invariant and translation invariant.

The relationship between joint angle pose q and state fea-
ture x can be described as follows:

x = [Aty At Aryty e, 0y - 8] ®)
where the first three parameters At,, At., and Ar, are
global features, and t,, 7., and . are the other three compo-
nents of the root joint.

Similarly, we can easily transform the state features x
back to the corresponding joint angle pose q. As our global
rotation and translation are related to the previous frame,
we use a homogeneous global transformation matrix to
maintain the global state of the character and initialize it to
the identity matrix. For every frame, we can obtain the local
matrix of the frame from features and update the global
transformation matrix by:

Mt+1 =]\/[t,]\/fﬁrlﬁloml

At,
Rotsys(Ar 0 @
Mi110cal = x3(Ary) ol
0O 0 0 1

where the right column of A, contains the global root
position on the x-z plane for frame ¢ + 1. The rotation of all
the joints can be directly recovered from the motion
features.

4.1.2 Motion Modeling with RNNs

RNN is a class of neural networks that has been widely used
to model dynamic temporal behaviors. It employs parame-
ter sharing over time by using the same group of parame-
ters for every frame. In our application, it takes the hidden
states and current features as input and is trained to predict
the probabilistic distribution of the features at the next
frame. The hidden states in the RNN model carry the infor-
mation about the history. This is why RNNs are suitable for
handling long term temporal dependence. The derivative of
an RNN needs to be computed by Back Propagation
Through Time (BPTT) [33] which is similar to normal back
propagation methods except for its sequential structure.
Similar to many other deep neural networks, RNNs also
suffer from the problem of vanishing gradient because the
gradient flow must pass through an activation layer in each
frame and thus the magnitude of the gradient decreases
quickly over time. This prevents the network from taking a
relatively long history into account. LSTM cells [2] were
introduced to address this challenge. In LSTM cells, the hid-
den state is divided into two parts: C and h. C carries the

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

18 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

input(42)

|

FC1(500)

|

FC2(500)

|

Lstm1(500)

v

Lstm2(500)

y

FC3(500)

v

Output(425)

Fig. 3. The structure of our RNN model. It has three fully connected
layers (FC1, FC2, and FC3) and two LSTM layers (LSTM1 and LSTM2).
The numbers in the brackets are the width of the corresponding layer.

memory of the network, and h is the output of the network.
Please refer to the Appendix for more details of LSTM.

LSTM ensures that gradient flow in C} no longer needs to
pass through activation functions. The vanishing gradient
problem is therefore significantly reduced. As the LSTM
model introduces a new variable C; that carries the long
term memory, the formulation of the problem can be rewrit-
ten as follows:

p(Xey1|xe, hy, C). (5)

The structure of our RNN motion model is shown in
Fig. 3. To predict the distribution of the next frame, our out-
put should not be the state features themselves. Similar
to [34], we model the probabilistic distribution of the features
in the next frame using a Gaussian Mixture Model (GMM).
The distribution of the GMM can be written as follows:

M
P(Xp1) = ZwiN(Xt+1|Mia‘7i)v (6)
=1

where the ith vector component is characterized by a nor-
mal distributions with weights w;, means p; and standard
deviations o;. To simplify the problem, we assume that the
covariance matrix of every Gaussian is a diagonal matrix.
The GMM model requires 2721 w; =1, w; > 0,and o; > 0.
However, the output of our network can be in (—oo, +00).
To bridge this gap, we define a transformation between the
network output wj, i; ;, and ¢;; and the GMM parameters
w;, J4; j, and o ; as follows:

i —~
. PN o
W; = ————=, Kij = Wij;>0ij =€, @)

M o
Zj:l e

where 0; ; is the standard deviation of the j-th dimension in
the ith Gaussian. By this transformation, we ensure that the
weights w; and the standard deviations of the Gaussian dis-
tribution o; ; are positive, and Zf\il w; = 1. M is set to 5 in
our experiment.

The loss function for every frame can be written as:

argmin £ = —logp(x¢+1[x¢, hy, Ct)). ®

During training, we compute % from the GMM transfor-

mation and backpropagate the derivative to the top layers
to obtain all the derivatives of the parameters. Our network
is trained with RMSProp [35]. In our implementation, the
derivative is clipped in the range [-5, 5].

4.1.3 Model Training

As observed by other researchers [25], [26], RNN based gen-
erative models often have difficulty obtaining good perfor-
mance in long term motion generation. They tend to fail
when generating long sequences of motion, as the errors in
their prediction are fed back into the input and accumulate.
As a result, their long-term results suffer from occasional
unrealistic artifacts, such as foot sliding, and gradually con-
verge to a static pose. In the following, we summarize our
strategies for training RNNs.

Adding Noise into the Training Process. Because the predic-
tion of every frame often has small error, there is a risk that
the error might accumulate over time and cause the model
to crash at some point. Similar to [34], [36], we introduce
independent identically distributed Gaussian noise to the
state features x; during training in order to improve
the robustness of our model prediction. By adding noise to
the network input, the network to be learned becomes more
robust to noise in the prediction process. As a result, the
learned model becomes more likely to recover from small
error in the prediction process. In our experiment, we set
the mean and standard deviation of Gaussian noise to 0 and
0.05, respectively.

Downsampling the Training Data. We find that downsam-
pling the training data from 120fps to 30fps can improve the
robustness of the prediction model. We suspect that down-
sampling allows the RNN to handle longer term temporal
dependence in human motions.

Optimization Method. Optimization is critical to the per-
formance of the learned model. We have found that
RMSProp [35] performs better than SGD method adopted
in [23].

The Size of the Training Datasets. Training an RNN model
from scratch requires considerable training data. Insuffi-
cient training data might result in poor convergence. We
find that training an initial model with large diverse data-
sets, (e.g., the CMU dataset) and then refining the model
parameters using a smaller set of high-quality motion data
can reduce the convergence error and lead to a better
motion synthesis result.

The batch size is set to 20, and the time window size is set
to 50. Our learning rate is initialized to be 0.001, it is multi-
plied by 0.95 after every epoch. We train for 300 epochs. We
find that the loss converges after approximately 150 epochs,
which is approximately 30000 iterations.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: COMBINING RECURRENT NEURAL NETWORKS AND ADVERSARIAL TRAINING FOR HUMAN MOTION SYNTHESIS AND... 19

— Input(54)
v

FC1(500)

!

———>Lstm1(1000) —>

v

FC2(54)

)

Output(54)

Fig. 4. The structure of the GAN generator network. It consists of two
fully connected layers (FC1 and FC2) and one LSTM layer (Lstm1). The
numbers in the brackets are the width of the corresponding layer.

4.1.4 Motion Generation with RNNs

We now describe how to generate a motion instance with
the learned RNN model. Given the character poses of the
initial frames, q, and q;, we first transform them into the
features space x; and x; as we described in Section 4.1.1.
For every frame, given the current features x; and the cur-
rent hidden states h, and C;, we apply them as the input of
the RNN model to obtain a Gaussian Mixture Model for the
probabilistic distribution of the features at the next frame
(see Fig. 3), the hidden states are updated at the same time.
Next, we sample from the Gaussian Mixture Model to
obtain an instance for the features at the next frame x;;.
We repeat the process to generate a sequence of state fea-
tures over time: X, Xi, X2, ..., X,. Finally, we transform the
state features back to the corresponding joint angle poses to
create a motion sequence: q, qi, s, - - - , 4,

4.2 Adversarial Refiner Training

Starting from the motion features xzyy generated by the
generative RNN model G, our goal herein is to train a
refiner network R by using an adversarial loss such that the
refined motion data Ry(xpyy) are indistinguishable from
the real motion data x,., using a discriminative network D,
where 6 is the parameters of the refiner network.

To add realism to the motion generated by RNNs, we
need to bridge the gap between the distributions of synthe-
sized motion data and real motion data. An ideal refiner
will make it impossible to classify a given motion sequence
as real or refined with high confidence. This need motivates
the use of an adversarial discriminator network, Dy, which
is trained to classify motions as real vs refined, where ¢ is
the parameters of the discriminator network. The adversar-
ial loss used in training the refiner network is responsible
for “fooling” the network into classifying the refined
motions as real. Following the GAN approach, we model
this as a two-player minimax game and update the refiner
network Ry and the discriminator network Dy alternately.

4.2.1 Generative Adversarial Networks

The adversarial framework learns two networks (a genera-
tive network and a discriminative network) with competing

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Down

losses. The generative model (R) (i.e., the refiner network)
transforms the motion generated by the RNN (xpyy) into
the refined motion Ry(xzyy) and tries to “fool” the discrim-
inative model D. The loss function for the generative model
is described as follows:

arg;nin —log(Dy(Re(xrNN))), 9)

where Dy(x) is the probability of x being classified by the
discriminative network as real data. This loss function
wants to “fool” the discriminative model, so that the refined
motion Ry(xpyy) should be indistinguishable from real
motion data. Here, we use the -logD loss rather than the
original log(1-D) loss to avoid the early gradient vanishing
problem, especially when the discriminator is too strong.

We define the loss function of the discriminative model
as follows:

arg;nin —log(1 — Dy(Ry(xrnN))) — Llog(Dg(Xreat))- (10)
This loss function ensures that the learned discriminative
model is capable of distinguishing “real” or “refined” data.

In our implementation, we focus the refiner network on
the features that are ignored by the generator model. The
most important features lost in the RNN model are the posi-
tions and velocities of the end effectors. Therefore, we com-
pute the velocities and positions of the end effectors from
the input x, denoted p,,;(x) and v.,q(x), respectively, and
include them in the input for both the generative and dis-
criminative models.

Refiner Network. Our generative model has two fully con-
nected layers and one LSTM layer (Fig. 4). Mathematically,
the refiner network learns a regression function R, that
maps the input motion x as well as the positions and veloci-
ties of the end effectors to the refined motion Ry(x):

X
Rinput - Pend(x)
Vend(x)
Ry(x) = (Wyg - Istm(relu(W - Ripu + br1)) + br2) +x

1n

where the network parameters 6 include the weights of the
LSTM layer (Lstm1) and the weights and biases of two fully
connected layers, including w,,, w,,, b, ,and b,,.

Discriminative Model. For the discriminator, we aim to
build a classifier to distinguish the refined motions from the
real motions. We apply a bidirectional LSTM [37], which
have been demonstrated to be more powerful [37] than an
LSTM, to model the discriminative model. The structure of
the network is shown in Fig. 5. Mathematically, it can be
written as follows:

pend (X) :|
Ven[l(x)
= Wiy - bilstm®(relu(wWay - dinpur + ba1)) + b,

dinput = [

Dy(x)
(12)

where the network parameters ¢ include the weights of the
bidirectional LSTM layer and the weights and biases of two

full?f connected layers, including wy, , wg,, bg,, and bg,.
oaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore Restnctlons apply.

20 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

Inputframe 1 Inputframe 2 Inputframe n

l |

FC1(500) FC1(500)

! !

Bilstm(500) &— Bilstm(500) k— eeeeee i Bilstm(500)

— T

FC2(2)

l

Output(1)

Fig. 5. The structure of the GAN discriminator network. It consists of two
fully connected layers (FC1 and FC2) and one bidirectional LSTM
layer (Bilstm). The numbers in the brackets are the width of the corre-
sponding layer.

Motion Regularization. We add a regularization term to the
generative loss function to ensure that the difference
between the input motion and refined motion is as small as
possible. This leads to the following generative loss function:

argeminE = —log(Dy(Re(xrnn))) + Al|root(x) — root(Rs(x))]|?,

(13)

where root(x) and root(Ry(x)) are the root positions of the
input motion x and the refined motion Ry(x), respectively.
In addition, the weight A controls the importance of the reg-
ularization term. In our experiment, A is set to 20.

4.2.2 Adversarial Training Details

Adversarial training is hard because of the competition
between the generative and discriminative networks. It
deteriorates fairly easily when one of the two models is too
strong. Our training strategies for adversarial training are
summarized as follows:

Training the Generative Model More. We have found that if
the two networks are trained equally in a cycle, the discrimi-
nator often dominates the generator, leading to crashing of
the training. In our practice, the generative model and dis-
criminative model are each updated 75 times in the begin-
ning. After that, we update the generative model five times
and the discriminative model once at every step.

Using a History of Refined Motions. Another problem of
adversarial training is that the discriminator network only
focuses on the latest refined motions. The lack of memory
may cause (i) false divergence of the adversarial training,
and (ii) the refiner network reintroducing the artifacts that
the discriminator has forgotten. To solve this problem, we
update the discriminator using a history of refined motion
rather than only the ones generated by the current network.
To this end, similar to [14], we improve the stability of
adversarial training by updating the discriminator using a
history of refined motions, rather than only the ones in the
current mini-batch. We slightly modify the algorithm to
have a buffer of refined motions generated by previous net-
works. Let B be the buffer size, and b be the batch size. We
generate B fake data in the very beginning. At each iteration
of discriminator training, we sample ¢ motions from the

current refiner network, and sample an additional § motions
from the buffer to update the parameters of the discrimina-

tor. After each training iteration, we randomly replace 2

samples in the buffer with the newly generated refined
motions. In practice, B is set to 320, and b is set to 32.

Adjusting the Training Strategy when One of the Models is
Too Strong. During training, we find that sometimes the dis-
criminative model is easily trained to be too strong such
that the generative model is nearly broken. To balance the
training, we multiply the iteration times of the generative
model by 2 when the discriminator’s softmax loss < 0.01.
In contrast, we divide the iteration times of the generative
model by 2 when the discriminator’s softmax loss > 1. We
find this to be a useful strategy to avoid unstable GAN train-
ing. This approach is similar to that of [15].

Both the generative and discriminative models are
trained by RMSProp [35]. We set the learning rate of the
refiner to be 0.002 and the learning rate of the discriminator
to be 0.005. The decay rate of RMSProp is set to 0.9.

4.2.3 Motion Generation with Adversarial Training

After the refiner network is trained, we can combine it with
the generative RNN model for motion synthesis. To achieve
this goal, we first choose an initial state that we then use
along with the RNN generative model (G) to randomly gen-
erate a motion sequence as described in Section 4.1.4. Next,
we compute the velocities and positions of the end effectors
for every frame of the generated motion sequence. We aug-
ment the motion features with the velocities and positions
of the end effectors and input them into the refiner network
(R) to obtain the refined motion features. In the final step,
we transform the refined motion features back to the corre-
sponding joint angle poses to form the output animation.

4.3 Contact-Aware Motion Model
In this section, we describe how to embed the contact infor-
mation into our generative model to further improve the
quality of the generated motion. To this end, we first
describe our semi-automatic contact labeling. We start from
computing the speed of the left and right toes for all the
training motion clips. Then, we select a speed threshold
(0.45 m/s in practice) for judging the foot contact. For the
frames in which the speed of the left/right toe is below the
threshold, we label the left/right foot contact state as 1 for
the current frame; otherwise, the foot contact state is labeled
as 0. After the automatic labeling, we manually check the
result to avoid label mistakes caused by noisy motion data.
In our application, we encode the contact information
into a 2x1 binary vector ¢ = [¢;,¢,]". The first bit represents
if the left foot of the character is on the ground, and the sec-
ond bit represents if the right foot is on the ground. We aug-
ment the motion features with contact information for RNN
motion modeling. Our motion feature can be written as:
q=[ty tyt.ryryr, 02 - 0;¢ c,,.]T. (14)
In addition, we also augment both the network input and
the network output with the contact vector in adversarial
training. Contact awareness further improve the quality of the
enerated motion. Another advantage of contact-awareness is

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: COMBINING RECURRENT NEURAL NETWORKS AND ADVERSARIAL TRAINING FOR HUMAN MOTION SYNTHESIS AND... 21

Fig. 6. A comparison between (a) motion generated by the RNN and (b)
motion generated by the refinement network. The GAN model eliminates
the foot sliding problem and obtains a more robust performance.

to automatically label every frame of the generated motion
with contact information. This allows us to enforce environ-
mental contact constraints in a motion generalization process,
thereby eliminating noticeable visual artifacts, such as foot
sliding and ground penetration in the output animation.
Fig. 6 shows a comparison before and after the refinement.

5 MOTION SYNTHESIS AND CONTROL

In this section, we demonstrate the power of our GAN
motion model for various applications, including random
motion generation, offline motion design, online motion
control and motion denoising.

5.1 Random Motion Generation

To achieve accurate motion control, we require a generative
model that can generate various motions. We first show our
motion’s ability to generate different motions. As men-
tioned in Sections 4.1.4 and 4.2.3, our model can sample var-
ious motions from any initial frame. Similar to our
approach in training, we allow the input of the network to
have a small noise. Experiment shows that this can expand
the generative ability of the model. This means that we can
have network noise d;, ds,...,d,, as another group of varia-
bles in addition to motion features. The generated motion is

(©

Fig. 7. The random motion generation results of (a) walking motion, (b)
running motion. (c) motion with different styles from the same initial
frame. The yellow circles show the foot contact label.

foot contact-aware because of the contact awareness of our
model.

As our model is foot contact-aware, we introduce a post-
processing procedure for offline applications after motion
generation. We can extract contact information from gener-
ated motion features. We apply an inverse kinematic tech-
nique to ensure that the speed of the contact points is zero,
and all the contact points are located on the corresponding
contact plane. This postprocessing is used for the result of
the random motion generation and the offline motion
design in our demo. If the contact information in the train-
ing data is noisy or the model generates wrong contact label,
the postprocessing may lead to an unnatural gait type.

We show a random motion generation example for styl-
ized motions in Fig. 7.

5.2 Offline Motion Design

Our generative model is also well suited for generating nat-
ural-looking human motion consistent with user-defined
input. We formulate the motion control problem in an MAP
estimation framework. We treat the given constraints as the
observation from an unknown motion sequence. To ensure
that we obtain a motion sequence with high quality even

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

Authorized

22 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

when the given constraints are impossible to satisfy, we
assume that the observations contain noise. We use the
trained motion model as the motion prior. Our goal is to
find a sequence of motion vectors s={s;i=1,2,..T} that is
most likely to appear. This means that we want to maximize
the probability P(s, d|s, c,e). According to Bayes’ rule, we
have:

argmax P(s,d|sg,c,e)
s,d

P(S> d‘SO)P(Ca e‘Sva S, d)

= arg max 15
gsﬁd p(C, e|So) (15
x argmax P(s,d|sy)P(c|sg,s,d)P(e|sg,s,d).
s.d
The first term is the prior term, it can be written as:
T
p(S, dlSO) = P(d17 d27 sy dT) HP(Si|SO7 S1,...,8i-1, dU7 ceey di—l)'
i=1
(16)

The first part of the prior term is Gaussian noise, it obeys a
Gaussian distribution, and the prior for the noise is:

d?
A

P(dy,dy,....d,) =[] e s
=2

a7

Here, 0,5 is set to 0.05 by experiment. The second part of
the prior is the probability from the RNN-based GAN
models.

Control Term. The second term of Equation (15) is the con-
trol term. Our model enables the user to accurately control a
character at the kinematic level. Low-level kinematic control
is important because it allows the user to accurately control
motion variations of particular actions. Our motion control
framework is very flexible and supports any kinematic con-
trol inputs. The current system allows the user to control an
animation by selecting a point (e.g., root) on the character
and specifying a path for the selected point to follow. The
user could also direct the character by defining the high-
level control knobs, such as turning angles, step sizes, and
locomotion speeds. More specifically, we allow the user to
control the root path of an animated character. For root joint
projection on the ground for every frame root(s;), we first
find the nearest points c,,-; on the curve. We assume that
there is Gaussian noise with a standard deviation of o for
the user’s control inputs c. Then, we can define the likeli-
hood of fitting as follows:

r)
[ea
Peurve X | | e fit
i=1

The standard deviation of the fitting term o;, indicates the
preference of the user’s fitting accuracy. The smaller it is,
the more attention the controller pays to the fitting accuracy.
When the given curve is not achievable and ¢%; is too small,
the synthesized motion would be strange. In our experi-
ment, 0%, is set to 0.5.

Contact Awareness Term. The last term is the contact
awareness term. Due to the contact awareness of our model,
our %enerated motion is automatically annotated with

(18)

contact information. We first retrieve contact information
from the network output. Then, for each frame, if there is a
contact between the character and the environment, we
measure two distances: the first one is the distance between
the synthesized contact point on the character in the current
frame and the previous frame; the second one is the point
plane distance between the synthesized contact point on the
character and the corresponding contact plane. We assume
Gaussian distributions with standard deviations of o, for
the adjacent frames constraint of the contact-awareness
term and o, for the point-plane constraint of the contact-
awareness term. Then, the contact awareness term can be
written as:

N Gim1) oot — F(52) oI

-Pcontact =€ o2
con
, (19)
- Hn ' (f(s’i—l)foot - pplune)”
G%{m,y

Because the original probability is hard to evaluate, we
transform it to its -log form, so the overall loss function is
min

81,89,y Sr,,,.dl,d2.4,4,d7,,

E= —109 (P prior * Rwisc . RIUTUU - P, cuntact)‘
(20)

This loss function is nonconvex because of the complexity
of the RNN. To solve this optimization problem, we combine
the power of sampling and gradient-based optimization to
achieve a good result in an acceptable time. Given a starting
frame and a user-defined curve, our experiment shows that
synthesizing the motion sequence frame-by-frame will not
yield good results. This occurs because in an RNN model,
the performance in every frame is highly related to previous
frames. Therefore, we use spatial temporal optimization to
make the generated motion sequence smooth.

In the optimization, the parameters of the neural network
are fixed. The optimizer tries to find the solution that best
fits the user-defined constraints while satisfying the motion
distribution predicted from the neural network and mini-
mizing the noise.

We solve the problem through the sliding windows
method. We optimize for a sequence of B frames each time,
which we call a “window”. For adjacent windows, they
share an overlap of b frames. For the initialization of the
optimization, the overlapped part with the last window is
set to the optimization result from last window, and the
other part is sampled by our motion model. We set B and b
to 34 and 17, respectively.

Because of the complexity of the loss function, the gradi-
ent descent method can be very slow to converge and some-
times leads to local minima. We combine the sampling-
based method and gradient-based method to solve the
problem. We first apply particle swarm optimization [38]
for a few iterations to find a good initialization and then
switch to gradient-based optimization to obtain a more pre-
cise result. We compute the gradient £ and %% by the chain
rule in the optimization.

As our motion features are based on the global motion
states of the previous frame (we use Ar,, At,, At. as part
of the features), our jacobian matrix for the constraint term

censed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: COMBINING RECURRENT NEURAL NETWORKS AND ADVERSARIAL TRAINING FOR HUMAN MOTION SYNTHESIS AND... 23

(b)

Fig. 8. The result of offline motion control. The red line on the ground is
the user input constraint, the yellow line is the root trajectory for the syn-
thesized motion. We draw a few keyframe of the synthesized motion
here. (a): A walking result, (b): A running result. Our results are best
seen in video form.

and foot contact term is more complex than in previous
approaches. Therefore, we analytically evaluate it by BPIT.
Because of the RNN prior term, our problem is not in the
least squares form. We apply the LBFGS [39] method to
solve the problem.

5.3 Online Motion Control

In addition to offline motion design, our model is also
suited for online motion control. We allow the user to con-
trol the speed and direction of the character (see Fig. 9). Sim-

ilar to the offline case, we also model the problem in an
MAP framework.

argmax P(s,d|sg)P(c|sy,s,d)P(e|sg, s, d).
s.d

(21)

We still have the RNN prior term, the control term and
the contact awareness term. One difference lies in the con-
trol term, where we need to address direction and speed
constraints from the user. We also perform the optimization
in a sequence of n frames each time. As a result, the control
response has a latency. Here, we set n to 5. As the control
term is not the same, we formulate the corresponding loss
function for the new control terms. Similarly, our realtime
motion control system allows for accurate and precise
motion control at the kinematic level. Our current imple-
mentation allows the user to control the speed and direction
of locomotion, such as walking and running. The online
constraints includes speed control and direction control,
which can be written as:

P(C|S()7 S, d) = P(Cspccd|s()7 S, d)P(Cd’ircction|s(]e S, d) (22)

Fig. 9. Online motion control. We have speed and direction control here.
The control speed is shown on the left-top of the screen, and the direc-
tion is shown by the arrow on the ground. Our results are best seen in
video form.

We address speed and orientation online control in the
following.

Speed Control. We allow the user to give a speed control to
the character. As the speed of the character naturally
changes with time, we constrain the character’s average
speed over the window as close as possible to the given
speed control. Assuming that the control result is a Gauss-
ian distribution around the control input with standard
deviation oc.q, we have:

1\ 2
k> . speedi—cpeed]
2

P(cspm;d|s()7 S, d) xe Copecd (23)

Direction Control. The user can also control the moving
direction of the character. We define the facing direction of
the character as the angle around the y-axis of the root joint.
We measure the difference between the direction of the last
frame and the control input. We assume a Gaussian distri-
bution for the control input:

P(C(lir(%ctiun‘s()v S, d) X 8"dwth?cd”MtionHZ, (24)
where directr is the direction of the last frame in the batch,
and Cgipection 1S the direction control input. The optimization
problem is also solved by gradient-based optimization.
Using GPU acceleration by a GTX970 graphics card, we
have an average frame rate of 30 fps.

5.4 Motion Denoising

Motion denoising takes a noisy and unlabeled motion
sequence as input and generates a natural-looking output
motion that is consistent with the input motion (see Fig. 10).
We formulate the problem as an MAP problem:

argmax P(s,d|sg)P(c|sg,s,d)P(e|so,s,d).
s.d

(25)

The first prior term and the third environment contact con-
straint term is the same as those in Section 5.2. We model
the second constraint term in the following.

We assume that the noise consists of two parts: the noise
of the root position and the noise of the joint angles. We
model both types of noise in the original motion as Gauss-
ian noise. Therefore, we have:

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

24 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

Fig. 10. A comparison of motion before and after filtering. The trajectories of the root joint and foot joints are shown in yellow. (a) the original noisy
motion. (b) the motion after applying filtering. The joint trajectory of the motion before filtering is jerky and outlier poses are circled in red. This result

is best seen in video form.

n .
Z/:l \\ang[u_,(c)ﬂuzgl«_,(s,,)\\2

2
(Sroot=r001(s;)) .

Py %"
P(C|S(], S, d) x e 20, oot .e T angle ,

(26)

where ¢, and ¢, . are the root position and joint angles of
the original motion, and root(s;) and angle(s;) are the root
position and joint angles of the filtered motion. This optimi-
zation problem is also solved by LBFGS [39].

Initial State Estimation. There is a disadvantage for a tradi-
tional RNN-based motion model in the first frame. When we
perform motion synthesis, the RNN output would have hop-
ping occur between the first frame and the second frame. For
most applications, we can simply discard the first frame to
avoid the problem. However, certain scenarios (e.g., motion
filtering) require us to solve the problem. The traditional
RNN-based sequence synthesis method starts the synthesis
with the zero state [3], [23]. However, in training, the input
states for most frames are nonzero. The network is trained to
fit the next frame with previous frame features and the
appropriate hidden state. Therefore, when the hidden state
of the network is set to zero in the first frame, the network is
not sufficiently trained to address this situation and may pro-
duce wrong synthesis result. To solve the problem, we esti-
mate the appropriate hidden state for the first frame by our
RNN motion model. The appropriate hidden state makes the
motion in the second frame very likely to appear in the esti-
mated motion distribution, and the loss function is:

M
min £ = —Zogz w; P(sa]s1,hy),

gl i=1

(27

where h; is the hidden state for the first frame. We estimate
the initial hidden state by gradient-based optimization. We
compute the gradient ?9_;[: by backpropagation and use the gra-
dient descent method to perform the optimization. Given
appropriate initial states, the generated motion would be
smooth between the first frame and second frame.

6 RESULTS

We have demonstrated the power and effectiveness of our
model in motion generation, motion control and motion
denoising. To the best of our knowledge, this is the first gen-
erative deep learning model capable of generating an infi-
nite number of high-quality motion sequences with infinite
lengths. The user studies show that motions generated by
our model are comparable to motion capture data obtained
by ten Vicon cameras. In addition, we have demonstrated
the superiority of our model over a baseline RNN model.
Our results are best seen in video form.

We have captured walking and running data of a single
actor for 525 motion sequences. These motion sequences
vary in speed, step length, and turning angle. In addition,
we use CMU dataset to perform pretraining. Our model is
relatively small because we do not need to preserve the
original motion sequence once the model is trained. Our
generative model (41 Mb) is much smaller than the size of
the original training datasets (133 Mb). The original dataset
contains 419488 frames (58.26 minutes) of walking and run-
ning data that vary in speed, step size, and turning angles.
When we acquire new training data, we do not always need
to train the model from scratch. If the total amount of data
does not exceed the capacity of the network, we can utilize
the previous networks as a pretrained model and fine-tune
the model with the new training data instead.

Random Motion Generation. This experiment demonstrates
that our model can generate an infinite number of high-
quality animation sequences with infinite length. We select a
certain starting frame and then generate 100 motions follow-
ing the method we described in Section 4.2.3. The results
show that the generated motion varies in step size, speed,
and turning angle. The results can been seen in Fig. 1. To
demonstrate that our method can be used to model various
motions, we also train our model on a stylized motion
dataset [40]. The result shows that our model samples
various motions from the same initial frame. We show the

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: COMBINING RECURRENT NEURAL NETWORKS AND ADVERSARIAL TRAINING FOR HUMAN MOTION SYNTHESIS AND... 25

dataset motion
noisy motion

joint angle

0 20 40 60 80 100
frame index

(@)

dataset motion
/- /‘/\ filtered motion
0.05 |

joint angle
o

o
°
&

-0.1

0 20 40 60 80 100
frame index

(b)

Fig. 11. A comparison of one joint angle for the motion before and after
the filtering and a similar motion in the training dataset. The filtered
motion is more smooth and similar to the dataset motion.

result in Fig. 7. This result is best seen in the supplementary
video.

Offline Motion Design. The user can generate a desired
animation that is consistent with the control input. This
experiment shows that our model can generate a desired
animation by specifying the projection of the root trajecto-
ries on the ground. In the accompanying video, we show
the process of creating desired, natural-looking animations
with both hand-drawn curves and predefined curves. The
results can be seen in Fig. 8.

Online Motion Control. The online motion control system
offers precise, realtime control over human characters,
including the speed and direction of walking and running.
The accompanying video shows that the character can make
a sharp turn, e.g., -180 degrees or +180 degrees, or speed up
and down with little latency. A result can be seen in Fig. 9.

Motion Denoising. The accompanying video shows a side-
by-side comparison between input noisy motion and output
motion after denoising for both walking and running. In
both cases, the input motion appears very jerky and con-
tains significant foot-sliding artifacts and occasional outlier
poses. It is hard to judge when and where foot contact
occurs in the input motion. Our motion denoising algorithm
automatically identifies the foot contact frames and outputs
high-quality motion that closely matches the input motion.
One joint angle of the motion before and after the filtering
can been seen in Fig. 11. The keyframes of the motion before
and after motion filtering can be seen in Fig. 10.

The Advantage of Combining RNNs and Adversarial Train-
ing. The accompanying video shows a side-by-side compari-
son of generated motions from RNNs with and without
adversarial training. For both walking and running cases,
the results from RNNs alone are occasionally jerky and

(a) (b)

Fig. 12. Comparison against PFNN in offline motion design: (a) result
from our method; (b) result from PFNN. In both figures, the given curve
is shown in red, and the synthesized root trajectory is in yellow. From top
to bottom are the circle curve and sine curve.

contain frequent foot-sliding artifacts, while the combined
model produces highly realistic motion without any notice-
able visual artifacts. This can also be seen in Fig. 6.

Comparison between our Method and PFNN [30]. We evalu-
ate the effectiveness of our method by comparing against
PFNN [30]. Our comparison focuses on offline motion
design. Although PFNN is designed an online algorithm,
the authors also show results of following predefined paths.
The purpose of this experiment is to demonstrate that our
optimization-based algorithm achieves a more accurate
result than online algorithm. As our model is a contact-
aware model, our result also has higher quality.

In offline motion design, we select a predefined curve
as constraint and then synthesize motions by the two
models separately. For our model, the method described
in Section 5.2 is used to synthesize a motion that best fits
the given constraints while satisfying the motion prior
from the neural network. For PFNN, the given constraints
are used as the trajectory of the network input. We use
the code and trained model from the authors for PFNN
[30] in the experiment. We extract the contact information
for walking motion clips in the dataset of PFNN, then
train our model on these motion clips for the experiment.

We show the given curves and the root trajectories of the
synthesized motions in Fig. 12. The difference between the
them are measured by mean square error (MSE) between
the root trajectory of the synthesized motion to the given
curve. The result is shown in Table 1 and Fig. 12. The results
show that our method achieves a more accurate result.

Motion Quality. We evaluate the quality of synthesized
motions via user studies. Specifically, we compare the qual-
ity of our synthesized motions against high-quality motion
capture data (“Mocap”) and those generated from RNNs
(“RNN”). We implement the “RNN” synthesis method
based on the algorithm described in Section 4.1.4. “Mocap”

TABLE 1
MSE Error in cm for our
Method and PFNN

method circle curve sine curve
ours 1.8428 1.2704
PFNN 2.4764 2.0886

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

26 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

motion quality from user study(walking) motion quality from user study(running)

5 5
4 4
o]
g3t S 3
12} (2]
2 2

RNN GAN1

GAN2 Mocap RNN

GAN1

GAN2 Mocap

Fig. 13. Comparisons of motion quality. We ask the users to give a score
(1-5) of how realistic the synthesized motions are. This graph shows the
results of these scores, including the means and standard deviations for
motions generated via our methods with and without contact handling
(“GAN1” and “GAN2"), a baseline RNNs method (“RNN”), and high-qual-
ity motion capture data from ten Vicon cameras (“Mocap”).

represents high-quality motion capture training data cap-
tured by ten Vicon [41] cameras. “GAN1” and “GAN2” rep-
resent motions generated by a combination of our RNNs
and the refiner network with and without automatic foot
contact handling, respectively. Note that our contact-aware
deep learning model can automatically label every frame of
the generated motion with contact information. This infor-
mation allows us to automatically enforce environmental
contact constraints on the output motion.

We have evaluated the quality of motions on 25 users,
including males and females. Most of the users have no pre-
vious experience with 3D animation. For both running and
walking, we randomly generate seven animation sequences
from each algorithm along with seven animation sequences
randomly chosen from the mocap database. We render ani-
mations on a stick figure, similar to Fig. 9. Then, we ran-
domly organize all the animation clips. We ask the users to
watch each video and provide a score of how realistic the
motion is, ranging from 1 (“least realistic”) to 5 (“most real-
istic”). We report the mean scores and standard deviations
for the motions generated by each method, see Fig. 13. The
user studies show that the motions generated by our method
(“GAN2") are highly realistic and comparable to those from
the mocap database (“Mocap”). The evaluation also shows
the advantage of combining RNNs and adversarial training
for human motion synthesis, as both “GAN1” and “GAN2”
produce more realistic results than “RNN”. In addition, the
score difference between “GAN1” and “GAN2” shows the
advantage of embedding contact information into the deep
learning model for human motion modeling and synthesis.

7 CONCLUSION AND FUTURE WORK

We have introduced a generative deep learning model for
human motion synthesis and control. Our model is appeal-
ing for human motion synthesis because it is generative and
can generate an infinite number of high-fidelity motion
sequences to match various forms of user-defined con-
straints. We have demonstrated the power and effectiveness
of our models by exploring a variety of applications, rang-
ing from random motion synthesis to offline and realtime
motion control, and motion denoising.

h:
Cus C
X
h h
Xt

Fig. 14. The structure of LSTM.

We have shown that motions generated by our model are
always highly realistic. One reason is that our generative
model can handle both the nonlinear dynamics and long
term temporal dependence of human motions. Our model
is compact because we do not need to preserve the original
training data once the model is trained. Our model is also
contact aware and embedded with contact information,
thereby removing unpleasant visual artifacts often present
in the motion generalization process.

We formulate the motion control problem in a maximum
a posteriori (MAP) framework. The MAP framework pro-
vides a principled way to balance the tradeoff between user
constraints and motion priors. In our experiments, the input
constraints from motion control might be noisy and could
even be unnatural. When this occurs, the system prefers to
generate a “natural-looking” motion that “best” matches
the input constraints rather than generating the “best” pos-
sible motion that “exactly” matches the user constraints.

We have tested the model on a walking and running
dataset. In the future, we plan to test the model on aperiodic
motions, such as jumping and dancing. Currently, our
model does not achieve a good result for aperiodic motions.
One possible solution is combining our model with other
systems that can handle complex motions, e.g., [28]. We
also plan to test the model on a heterogeneous motion data-
base, such as walking, running, jumping and their transi-
tions. Our system achieves realtime control (30 fps) on a
GTX970 card; however, it is still not fast enough for mobile
applications. Therefore, one direction for future work is to
speed up the system via network structure simplification
and model compression.

We show that our generative deep learning motion
model can be applied for motion generation, motion control
and filtering. In the future, one possibility is to model het-
erogeneous motions with it. We believe that the model
could also be leveraged for many other applications in
human motion analysis and processing, such as video-
based motion tracking, motion recognition, and motion
completion. One of the immediate directions for future
work is, therefore, to investigate the applications of the
models to human motion analysis and processing.

APPENDIX

LSTM cells divide hidden states into two parts: h is sensi-
tive to short term memory, while C carries long term mem-
ory. Mathematically, it is:

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

WANG ET AL.: COMBINING RECURRENT NEURAL NETWORKS AND ADVERSARIAL TRAINING FOR HUMAN MOTION SYNTHESIS AND... 27

thl
(i £,0,9); = Wigog - | lum1 | +bifog
Tt
ir = o(ir)
fi=ol(f) (28)
o = o(oy)

g = tanh(g;)
Ct:ft'ct—l""g;'gt
ht = (f); . tanh(C’t),

where o is the sigmoid function o(z)= -2 and

Tre
tanh(z) = {7 /1 is called the forget gate. When J; is rather
small, all the historical memory of the LSTM cell will be
lost. This is useful when we do not want to maintain the
memory any more. i; is called the input gate. New informa-
tion is acquired by the long term memory C through this
gate. o, is called the output gate. It influences the output of

the LSTM cell.

—

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China No. 61772499 and Natural Science
Foundation of Beijing Municipality No. L182052.

REFERENCES

[1] I Goodfellow,]. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Proc. Advances Neural Inf. Process. Syst., 2014, pp. 2672-2680.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computat., vol. 9, no. 8, pp. 1735-1780, 1997.

[3] A. Graves, “Sequence transduction with recurrent neural
networks,” arXiv:1211.3711, 2012.

[4] A. Graves, A-R. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. Int. Conf. Acoust.
Speech Signal Process., 2013, pp. 6645-6649.

[5] T.Mikolov, M. Karafiat, L. Burget,]. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in Proc.
INTERSPEECH, 2010, vol. 2, Art. no. 3.

[6] I Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proc. Advances Neural Inf.
Process. Syst., 2014, pp. 3104-3112.

[7] D.Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” arXiv:1409.0473, 2014.

[8] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra, “Draw: A
recurrent neural network for image generation,” CoRR, vol. abs/
1502.04623, 2015. [Online]. Available: http://arxiv.org/abs/
1502.04623

[9] L. A. Gatys, A.S. Ecker, and M. Bethge, “A neural algorithm of

artistic style,” CoRR, vol. abs/1508.06576, 2015. [Online]. Available:

http://arxiv.org/abs/1508.06576

C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3D-R2N2:

A unified approach for single and multi-view 3D object

reconstruction,” CoRR, vol. abs/1604.00449, 2016. [Online]. Avail-

able: http:/ /arxiv.org/abs/1604.00449

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani,

J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-

resolution using a generative adversarial network,” CoRR,

vol. abs/1609.04802, 2016. [Online]. Available: http://arxiv.org/
abs/1609.04802

P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-

tion with conditional adversarial networks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Honolulu, HI, USA, July 21-26, 2017,

pp. 5967-5976. [Online]. Available: https://doi.org/10.1109/

CVPR.2017.632. doi: 10.1109/CVPR.2017.632.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” CoRR, vol. abs/1411.1784, 2014. [Online]. Available: http://
arxiv.org/abs/1411.1784

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images
through adversarial training,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2017, pp. 2107-2116.

D. Berthelot, T. Schumm, and L. Metz, “Began: Boundary equilib-
rium generative adversarial networks,” CoRR, vol. abs/1703.10717,
2017. [Online]. Available: http:/ /arxiv.org/abs/1703.10717

M. Brand and A. Hertzmann, “Style machines,” in Proc. 27th
Annu. Conf. Comput. Graph. Interactive Techn., 2000, 183-192.

Y. Li, T. Wang, and H.-Y. Shum, “Motion texture: A two-level sta-
tistical model for character synthesis,” ACM Trans. Graph., vol. 21,
no. 3, pp. 465-472, 2002.

J. Chai and]. Hodgins, “Constraint-based motion optimization
using a statistical dynamic model,” ACM Trans. Graph., vol. 26,
no. 3, 2007, Art. no.8.

M. Lau, Z. Bar-Joseph, and J. Kuffner, “Modeling spatial and tem-
poral variation in motion data,” ACM Trans. Graph., vol. 28, no. 5,
2009, Art. no. 171.

J. Min, Y.-L. Chen, and J. Chai, “Interactive generation of human
animation with deformable motion models,” ACM Trans. Graph.,
vol. 29, no. 1,2009, Art. no. 9.

X. Wei, J. Min, and]J. Chai, “Physically valid statistical models for
human motion generation,” ACM Trans. Graph., vol. 30, pp. 19:1-
19:10, May 2011. [Online]. Available: http:/ /doi.acm.org/10.1145/
1966394.1966398

J. Min and]. Chai, “Motion graphs++: A compact generative
model for semantic motion analysis and synthesis,” ACM Trans.
Graph., vol. 31, no. 6, pp. 153:1-153:12, Nov. 2012. [Online]. Avail-
able: http://doi.acm.org/10.1145/2366145.2366172

K. Fragkiadaki, S. Levine, P. Felsen, and]J. Malik, “Recurrent
network models for human dynamics,” in Proc. IEEE Int. Conf.
Comput. Vis., 2015, pp. 4346-4354.

A.Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-RNN:
Deep learning on spatio-temporal graphs,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 5308-5317.

J. Martinez, M. J. Black, and J. Romero, “On human motion predic-
tion using recurrent neural networks,” CoRR, vol. abs/1705.02445,
2017. [Online]. Available: http://arxiv.org/abs/1705.02445

I. Habibie, D. Holden, J. Schwarz,]J. Yearsley, and T. Komura, “A
recurrent variational autoencoder for human motion synthesis,” in
Proc. British Mach. Vis. Conf., London, UK, Sept. 4-7 2017. [Online].
Available: https://www.dropbox.com/s/6lqup02kbcpaejz/0414.
pdf?dl=1

J. Blitepage, M. J. Black, D. Kragic, and H. Kjellstrom, “Deep
representation learning for human motion prediction and classi-
fication,” CoRR, vol. abs/1702.07486, 2017. [Online]. Available:
http:/ /arxiv.org/abs/1702.07486

Y. Zhou, Z. Li, S. Xiao, C. He, Z. Huang, and H. Li, “Auto-
conditioned recurrent networks for extended complex human
motion synthesis,” in Proc. Int. Conf. Learn. Representations, 2018.
[Online]. Available: https:/ /openreview.net/forum?id=r11Q2SIRW
D. Holden, J. Saito, and T. Komura, “A deep learning framework
for character motion synthesis and editing,” ACM Trans. Graph.,
vol. 35, no. 4, pp. 138:1-138:11, Jul. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2897824.2925975

D. Holden, T. Komura, and J. Saito, “Phase-functioned neural net-
works for character control,” ACM Trans. Graph., vol. 36, no. 4,
pp- 42:1-42:13, Jul. 2017. [Online]. Available: http://doi.acm.org/
10.1145/3072959.3073663

K. Lee, S. Lee, and]. Lee, “Interactive character animation by
learning multi-objective control,” ACM Transactions on Graphics,
2018, Art. no. 180.

A.Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-RNN:
Deep learning on spatio-temporal graphs,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 5308-5317.

P.J. Werbos, “Generalization of backpropagation with application
to a recurrent gas market model,” Neural Netw., vol. 1, no. 4,
pp- 339-356, 1988.

A. Graves, “Generating sequences with recurrent neural
networks,” CoRR, vol. abs/1308.0850, 2013. [Online]. Available:
http://arxiv.org/abs/1308.0850

T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude,” COURSERA:
Neural Netw. Mach. Learn., vol. 4, no. 2, pp. 26-31, 2012.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1604.00449
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1609.04802
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
http://dx.doi.org/10.1109/CVPR.2017.632
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1703.10717
http://doi.acm.org/10.1145/1966394.1966398
http://doi.acm.org/10.1145/1966394.1966398
http://doi.acm.org/10.1145/2366145.2366172
http://arxiv.org/abs/1705.02445
https://www.dropbox.com/s/6lqup02kbcpaejz/0414.pdf?dl=1
https://www.dropbox.com/s/6lqup02kbcpaejz/0414.pdf?dl=1
http://arxiv.org/abs/1702.07486
https://openreview.net/forum?id=r11Q2SlRW
http://doi.acm.org/10.1145/2897824.2925975
http://doi.acm.org/10.1145/3072959.3073663
http://doi.acm.org/10.1145/3072959.3073663
http://arxiv.org/abs/1308.0850

28

[36]

(371

[38]

[39]

[40]

[41]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

G. W. Taylor and G. E. Hinton, “Factored conditional restricted
boltzmann machines for modeling motion style,” in Proc. 26th
Annu. Int. Conf. Mach. Learn., 2009, pp. 1025-1032.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681,
Nov. 1997.

J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
Machine Learning. Berlin, Germany: Springer, 2011, pp. 760-766.

D. C. Liu and J. Nocedal, “On the limited memory BFGS method
for large scale optimization,” Math. Program., vol. 45, no. 1,
pp- 503-528, 1989.

S. Xia, C. Wang, J. Chai, and J. Hodgins, “Realtime style transfer
for unlabeled heterogeneous human motion,” ACM Trans. Graph.,
vol. 34, no. 4, pp. 119:1-119:10, Jul. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2766999

Vicon, 2015. [Online]. Available: http://www.vicon.com

Zhiyong Wang received the BSc degree in auto-
mation from Tsinghua University (THU), China, in
2011. He is currently working toward the PhD
degree in computer science at the University of
Chinese Academy of Science, supervised by Prof.
Shihong Xia.

Jinxiang Chai received the PhD degree in com-
puter science from Carnegie Mellon University
(CMU). He is currently an associate professor
with the Department of Computer Science and
Engineering, Texas A&M University. His primary
research is in the area of computer graphics and
vision, with broad applications in other disciplines
such as virtual and augmented reality, robotics,
human computer interaction, and biomechanics.
He received an NSF CAREER award for his work
on theory and practice of Bayesian motion syn-
thesis.

Shihong Xia received the PhD degree in com-
puter science from the University of Chinese
Academy of Sciences. He is currently a professor
of the Institute of Computing Technology, Chi-
nese Academy of Sciences (ICT, CAS), and the
director of the human motion laboratory. His pri-
mary research is in the area of computer
graphics, virtual reality and artificial intelligence.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on July 14,2023 at 02:07:56 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/2766999
http://www.vicon.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

